IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v252y2022ics0360544222008982.html
   My bibliography  Save this article

Multi-site and multi-objective optimization for wind turbines based on the design of virtual representative wind farm

Author

Listed:
  • Song, Dongran
  • Xu, Shanmin
  • Huang, Lingxiang
  • Xia, E.
  • Huang, Chaoneng
  • Yang, Jian
  • Hu, Yang
  • Fang, Fang

Abstract

The design optimization of wind turbines is an effective solution for reducing the generation cost of wind power and enhancing its market competitiveness. Because wind power projects often require a long construction period and large investment, designing a wind turbine suitable for multiple sites is economically feasible. In this study, a multi-site and multi-objective optimization framework was proposed. Based on the modified energy cost model at single wind farm level, the concept of a virtual representative wind farm (VRWF) was presented, wherein a weight calculation method to design the weights of multiple wind farms was proposed. To simultaneously maximize the annual energy production and minimize the annual production cost of the VRWF, the non-dominated sorting multi-objective harmony algorithm was improved and employed for conducting the optimization, using which the non-dominated solutions were obtained. Subsequently, the subjective and objective combined fuzzy membership function method was presented to determine the best parameters from non-dominated solutions. The proposed method was applied to a case involving three wind farms, with the results confirming its applicability. Compared with the single-site optimization, the proposed multi-site optimization reduced the overall energy cost by 0.4%, 0.8%, and 1.9%, respectively, indicating the necessity of employing multi-site and multi-objective optimization.

Suggested Citation

  • Song, Dongran & Xu, Shanmin & Huang, Lingxiang & Xia, E. & Huang, Chaoneng & Yang, Jian & Hu, Yang & Fang, Fang, 2022. "Multi-site and multi-objective optimization for wind turbines based on the design of virtual representative wind farm," Energy, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222008982
    DOI: 10.1016/j.energy.2022.123995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222008982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruck, Maira & Sandborn, Peter & Goudarzi, Navid, 2018. "A Levelized Cost of Energy (LCOE) model for wind farms that include Power Purchase Agreements (PPAs)," Renewable Energy, Elsevier, vol. 122(C), pages 131-139.
    2. Aminmahalati, Alireza & Fazlali, Alireza & Safikhani, Hamed, 2021. "Multi-objective optimization of CO boiler combustion chamber in the RFCC unit using NSGA II algorithm," Energy, Elsevier, vol. 221(C).
    3. Song, Dongran & Liu, Junbo & Yang, Jian & Su, Mei & Wang, Yun & Yang, Xuebing & Huang, Lingxiang & Joo, Young Hoon, 2020. "Optimal design of wind turbines on high-altitude sites based on improved Yin-Yang pair optimization," Energy, Elsevier, vol. 193(C).
    4. Xu, Xiaomin & Niu, Dongxiao & Xiao, Bowen & Guo, Xiaodan & Zhang, Lihui & Wang, Keke, 2020. "Policy analysis for grid parity of wind power generation in China," Energy Policy, Elsevier, vol. 138(C).
    5. Li, Qing'an & Wang, Ye & Kamada, Yasunari & Maeda, Takao & Xu, Jianzhong & Zhou, Shuni & Zhang, Fanghong & Cai, Chang, 2022. "Diagonal inflow effect on the wake characteristics of a horizontal axis wind turbine with Gaussian model and field measurements," Energy, Elsevier, vol. 238(PB).
    6. Zhou, Shan & Yang, Pu, 2020. "Risk management in distributed wind energy implementing Analytic Hierarchy Process," Renewable Energy, Elsevier, vol. 150(C), pages 616-623.
    7. Longfu Luo & Xiaofeng Zhang & Dongran Song & Weiyi Tang & Jian Yang & Li Li & Xiaoyu Tian & Wu Wen, 2018. "Optimal Design of Rated Wind Speed and Rotor Radius to Minimizing the Cost of Energy for Offshore Wind Turbines," Energies, MDPI, vol. 11(10), pages 1-17, October.
    8. Vianna Neto, Júlio Xavier & Guerra Junior, Elci José & Moreno, Sinvaldo Rodrigues & Hultmann Ayala, Helon Vicente & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2018. "Wind turbine blade geometry design based on multi-objective optimization using metaheuristics," Energy, Elsevier, vol. 162(C), pages 645-658.
    9. Song, Dongran & Tu, Yanping & Wang, Lei & Jin, Fangjun & Li, Ziqun & Huang, Chaoneng & Xia, E & Rizk-Allah, Rizk M. & Yang, Jian & Su, Mei & Hoon Joo, Young, 2022. "Coordinated optimization on energy capture and torque fluctuation of wind turbines via variable weight NMPC with fuzzy regulator," Applied Energy, Elsevier, vol. 312(C).
    10. Huang, Wencheng & Zhang, Yue & Yu, Yaocheng & Xu, Yifei & Xu, Minhao & Zhang, Rui & De Dieu, Gatesi Jean & Yin, Dezhi & Liu, Zhanru, 2021. "Historical data-driven risk assessment of railway dangerous goods transportation system: Comparisons between Entropy Weight Method and Scatter Degree Method," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    11. Song, Dongran & Li, Ziqun & Wang, Lei & Jin, Fangjun & Huang, Chaoneng & Xia, E. & Rizk-Allah, Rizk M. & Yang, Jian & Su, Mei & Joo, Young Hoon, 2022. "Energy capture efficiency enhancement of wind turbines via stochastic model predictive yaw control based on intelligent scenarios generation," Applied Energy, Elsevier, vol. 312(C).
    12. He, Y.X. & Zhu, M.Z. & Xiong, W. & Zhang, T. & Ge, X.L., 2012. "Electricity transmission tariffs for large-scale wind power consumption in western Gansu province, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4543-4550.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanfang Chen & Young Hoon Joo & Dongran Song, 2022. "Multi-Objective Optimisation for Large-Scale Offshore Wind Farm Based on Decoupled Groups Operation," Energies, MDPI, vol. 15(7), pages 1-24, March.
    2. Shu, Tong & Song, Dongran & Joo, Young Hoon, 2022. "Non-centralised coordinated optimisation for maximising offshore wind farm power via a sparse communication architecture," Applied Energy, Elsevier, vol. 324(C).
    3. Zhu, Xiaoxun & Chen, Yao & Xu, Shinai & Zhang, Shaohai & Gao, Xiaoxia & Sun, Haiying & Wang, Yu & Zhao, Fei & Lv, Tiancheng, 2023. "Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification," Energy, Elsevier, vol. 270(C).
    4. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    5. Song, Dongran & Liu, Junbo & Yang, Jian & Su, Mei & Wang, Yun & Yang, Xuebing & Huang, Lingxiang & Joo, Young Hoon, 2020. "Optimal design of wind turbines on high-altitude sites based on improved Yin-Yang pair optimization," Energy, Elsevier, vol. 193(C).
    6. Xiaoxia, Gao & Luqing, Li & Shaohai, Zhang & Xiaoxun, Zhu & Haiying, Sun & Hongxing, Yang & Yu, Wang & Hao, Lu, 2022. "LiDAR-based observation and derivation of large-scale wind turbine's wake expansion model downstream of a hill," Energy, Elsevier, vol. 259(C).
    7. Mourad Yessef & Badre Bossoufi & Mohammed Taoussi & Saad Motahhir & Ahmed Lagrioui & Hamid Chojaa & Sanghun Lee & Byeong-Gwon Kang & Mohamed Abouhawwash, 2022. "Improving the Maximum Power Extraction from Wind Turbines Using a Second-Generation CRONE Controller," Energies, MDPI, vol. 15(10), pages 1-23, May.
    8. Motaeb Eid Alshammari & Makbul A. M. Ramli & Ibrahim M. Mehedi, 2022. "Hybrid Chaotic Maps-Based Artificial Bee Colony for Solving Wind Energy-Integrated Power Dispatch Problem," Energies, MDPI, vol. 15(13), pages 1-26, June.
    9. Gao, Xiaoxia & Zhang, Shaohai & Li, Luqing & Xu, Shinai & Chen, Yao & Zhu, Xiaoxun & Sun, Haiying & Wang, Yu & Lu, Hao, 2022. "Quantification of 3D spatiotemporal inhomogeneity for wake characteristics with validations from field measurement and wind tunnel test," Energy, Elsevier, vol. 254(PA).
    10. Tantau Adrian & Niculescu Elena, 2022. "The role of Power Purchase Agreements for the promotion of green energy and the transition to a zero carbon economy," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 16(1), pages 1237-1245, August.
    11. Ming, Zeng & Lilin, Peng & Qiannan, Fan & Yingjie, Zhang, 2016. "Trans-regional electricity transmission in China: Status, issues and strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 572-583.
    12. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2023. "Sustainable development pathways of China's wind power industry under uncertainties: Perspective from economic benefits and technical potential," Energy Policy, Elsevier, vol. 182(C).
    13. Zixin Dou & Yanming Sun & Tao Wang & Huiyin Wan & Shiqi Fan, 2021. "Exploring Regional Advanced Manufacturing and Its Driving Factors: A Case Study of the Guangdong–Hong Kong–Macao Greater Bay Area," IJERPH, MDPI, vol. 18(11), pages 1-14, May.
    14. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    15. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.
    16. Talaat, M. & Farahat, M.A. & Elkholy, M.H., 2019. "Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies," Energy, Elsevier, vol. 170(C), pages 668-682.
    17. Matteo Fermeglia & Paolo Bevilacqua & Claudia Cafaro & Paolo Ceci & Antonio Fardelli, 2020. "Legal Pathways to Coal Phase-Out in Italy in 2025," Energies, MDPI, vol. 13(21), pages 1-22, October.
    18. Izdebski, Mariusz & Jacyna-Gołda, Ilona & Gołda, Paweł, 2022. "Minimisation of the probability of serious road accidents in the transport of dangerous goods," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    19. Huang, Wencheng & Yin, Dezhi & Xu, Yifei & Zhang, Rui & Xu, Minhao, 2022. "Using N-K Model to quantitatively calculate the variability in Functional Resonance Analysis Method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    20. Joanna Wyrobek & Łukasz Popławski & Maria Dzikuć, 2021. "Analysis of Financial Problems of Wind Farms in Poland," Energies, MDPI, vol. 14(5), pages 1-28, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222008982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.