IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v251y2022ics0360544222008477.html
   My bibliography  Save this article

Polymerization during low-temperature electrochemical upgrading of bio-oil: Effects of interactions among bio-oil fractions

Author

Listed:
  • Deng, Wei
  • Wang, Xuepeng
  • Syed-Hassan, Syed Shatir A.
  • Lam, Chun Ho
  • Hu, Xun
  • Xiong, Zhe
  • Han, Hengda
  • Xu, Jun
  • Jiang, Long
  • Su, Sheng
  • Hu, Song
  • Wang, Yi
  • Xiang, Jun

Abstract

The electrochemical method is becoming a promising approach to deliver the bio-oil upgrading objective at room temperature. However, it still faces the coke formation issue because of the easy polymerization nature of bio-oil. Interactions among components impact the polymerization during the electrochemical upgrading of bio-oil. This study investigates the effects of interactions between the aromatic-rich and aromatic-poor fractions (ARFs and APFs) of the bio-oil on polymerization under various reaction time and current densities. Coke yield differences provide direct evidence of the existence of interactions between ARFs and APFs during the electrochemical upgrading process. Our results indicate that the coke yields and its condensation level are decreased by the interactions. The surface area, pore volume and the functionalities content of the coke are increased by the interactions. In addition to polymerization, more types of reactions including hydrogenation and esterification are induced by the interactions, resulting in more types of products and less coke. The interactions can inhibit polymerization by consuming the coke precursors before their condensation. The interactions can also inhibit the anodic adsorption and oxidation, thus depressing polymerization and coke formation.

Suggested Citation

  • Deng, Wei & Wang, Xuepeng & Syed-Hassan, Syed Shatir A. & Lam, Chun Ho & Hu, Xun & Xiong, Zhe & Han, Hengda & Xu, Jun & Jiang, Long & Su, Sheng & Hu, Song & Wang, Yi & Xiang, Jun, 2022. "Polymerization during low-temperature electrochemical upgrading of bio-oil: Effects of interactions among bio-oil fractions," Energy, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:energy:v:251:y:2022:i:c:s0360544222008477
    DOI: 10.1016/j.energy.2022.123944
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222008477
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Das, Sutapa & Goud, Vaibhav V., 2021. "RSM-optimised slow pyrolysis of rice husk for bio-oil production and its upgradation," Energy, Elsevier, vol. 225(C).
    2. Qing Yang & Hewen Zhou & Pietro Bartocci & Francesco Fantozzi & Ondřej Mašek & Foster A. Agblevor & Zhiyu Wei & Haiping Yang & Hanping Chen & Xi Lu & Guoqian Chen & Chuguang Zheng & Chris P. Nielsen &, 2021. "Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Haohong Duan & Juncai Dong & Xianrui Gu & Yung-Kang Peng & Wenxing Chen & Titipong Issariyakul & William K. Myers & Meng-Jung Li & Ni Yi & Alexander F. R. Kilpatrick & Yu Wang & Xusheng Zheng & Shufan, 2017. "Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd–Mo catalyst," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    4. Cai, Wenfei & Kang, Ning & Jang, Moon Ki & Sun, Chen & Liu, Ronghou & Luo, Zhongyang, 2019. "Long term storage stability of bio-oil from rice husk fast pyrolysis," Energy, Elsevier, vol. 186(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    2. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    3. Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.
    4. Pan, Ruming & Martins, Marcio Ferreira & Debenest, Gérald, 2022. "Optimization of oil production through ex-situ catalytic pyrolysis of waste polyethylene with activated carbon," Energy, Elsevier, vol. 248(C).
    5. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Bahadorian, Amirmahdi & Sadrameli, Seyed Mojtaba & Pahlavanzadeh, Hassan & Ilani Kashkouli, Mohammad Nabi, 2023. "Optimization study of linseed biodiesel production via in-situ transesterification and slow pyrolysis of obtained linseed residue," Renewable Energy, Elsevier, vol. 203(C), pages 10-19.
    7. Shi, Ziyi & Jin, Yanghao & Svanberg, Rikard & Han, Tong & Minidis, Alexander B.E. & Ann-Sofi, Kindstedt Danielsson & Kjeldsen, Christian & Jönsson, Pär G. & Yang, Weihong, 2023. "Continuous catalytic pyrolysis of biomass using a fluidized bed with commercial-ready catalysts for scale-up," Energy, Elsevier, vol. 273(C).
    8. Shi, Tao & Zhou, Jianzhao & Ren, Jingzheng & Ayub, Yousaf & Yu, Haoshui & Shen, Weifeng & Li, Qiao & Yang, Ao, 2023. "Co-valorisation of sewage sludge and poultry litter waste for hydrogen production: Gasification process design, sustainability-oriented optimization, and systematic assessment," Energy, Elsevier, vol. 272(C).
    9. Lin, Richen & O'Shea, Richard & Deng, Chen & Wu, Benteng & Murphy, Jerry D., 2021. "A perspective on the efficacy of green gas production via integration of technologies in novel cascading circular bio-systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Gao, Xueying & Li, Helong & Wang, Shuizhong & Liu, Zhenzhen & Ma, Jian-feng & Liu, Xing-e & Song, Guoyong, 2022. "Hydrodeoxygenation of lignin biophenolics to cyclohexanes over sub-nanometric Ru multifunctional catalyst," Renewable Energy, Elsevier, vol. 201(P1), pages 724-733.
    11. Nie, Yazhou & Deng, Mengsi & Shan, Ming & Yang, Xudong, 2023. "Clean and low-carbon heating in the building sector of China: 10-Year development review and policy implications," Energy Policy, Elsevier, vol. 179(C).
    12. Jain, Akshay & Bora, Bhaskor Jyoti & Kumar, Rakesh & Sharma, Prabhakar & Deka, Hiranya, 2023. "Theoretical potential estimation and multi-objective optimization of Water Hyacinth (Eichhornia Crassipes) biodiesel powered diesel engine at variable injection timings," Renewable Energy, Elsevier, vol. 206(C), pages 514-530.
    13. M. Mofijur & T.M.I. Mahlia & J. Logeswaran & M. Anwar & A.S. Silitonga & S.M. Ashrafur Rahman & A.H. Shamsuddin, 2019. "Potential of Rice Industry Biomass as a Renewable Energy Source," Energies, MDPI, vol. 12(21), pages 1-21, October.
    14. Zhang, Lihui & Li, Songrui & Hu, Yitang & Nie, Qingyun, 2022. "Economic optimization of a bioenergy-based hybrid renewable energy system under carbon policies—from the life-cycle perspective," Applied Energy, Elsevier, vol. 310(C).
    15. Hariana, & Putra, Hanafi Prida & Prabowo, & Hilmawan, Edi & Darmawan, Arif & Mochida, Keiichi & Aziz, Muhammad, 2023. "Theoretical and experimental investigation of ash-related problems during coal co-firing with different types of biomass in a pulverized coal-fired boiler," Energy, Elsevier, vol. 269(C).
    16. Zhang, Chengzhi & Zhang, Xing & Wu, Jingfeng & Zhu, Lingjun & Wang, Shurong, 2022. "Hydrodeoxygenation of lignin-derived phenolics to cycloalkanes over Ni–Co alloy coupled with oxophilic NbOx," Applied Energy, Elsevier, vol. 328(C).
    17. Xia, Sunwen & Yang, Haiping & Lei, shuaishuai & Lu, Wang & Cai, Ning & Xiao, Haoyu & Chen, Yingquan & Chen, Hanping, 2023. "Iron salt catalytic pyrolysis of biomass: Influence of iron salt type," Energy, Elsevier, vol. 262(PA).
    18. Wang, Qiang & Zhang, Chen & Li, Rongrong, 2022. "Towards carbon neutrality by improving carbon efficiency - A system-GMM dynamic panel analysis for 131 countries’ carbon efficiency," Energy, Elsevier, vol. 258(C).
    19. Xia, Longlong & Chen, Wenhao & Lu, Bufan & Wang, Shanshan & Xiao, Lishan & Liu, Beibei & Yang, Hongqiang & Huang, Chu-Long & Wang, Hongtao & Yang, Yang & Lin, Litao & Zhu, Xiangdong & Chen, Wei-Qiang , 2023. "Climate mitigation potential of sustainable biochar production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:251:y:2022:i:c:s0360544222008477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.