IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v250y2022ics0360544222006661.html
   My bibliography  Save this article

Proteomic analysis of Fusarium sp. NF01 revealed a multi-level regulatory machinery for lignite biodegradation

Author

Listed:
  • Niu, Xian
  • Zhang, Jianbin
  • Suo, Yonglu
  • Fu, Jilagamazhi

Abstract

Proteomic analysis provides vital bioinformation for revealing the mechanisms of coal biodegradation. Yet, proteomics-based studies of coal biodegradation are generally lacking. We first studied the physio-chemical changes in lignite biodegradation by a previously isolated fungus (Fusarium sp. NF01). The strain was able to degrade lignite showing significant changes in the ultraviolet–visible absorbance, surface structure and a 40.9% increased free radical concentration of residual lignite. Subsequently, isobaric tandem mass tags (TMT) and bioinformatic analysis were used for the quantitative and qualitative analyses of Fusarium sp. NF01 secretome. The expression levels of 62 proteins were significantly altered in the lignite-supplemented medium: 20 proteins were upregulated (fold-change, FC ≥ 2; P-value ≤0.05) and 42 proteins were downregulated (FC ≤ 0.5, P-value ≤0.05). Bioinformatic analysis indicated that Fusarium sp. NF01 acclimatized to the lignite-rich environment by regulating the expression of proteins involved in defense, lignite degradation, detoxification, and cellular metabolism. These findings may help promote sustainable and value-added coal utilization.

Suggested Citation

  • Niu, Xian & Zhang, Jianbin & Suo, Yonglu & Fu, Jilagamazhi, 2022. "Proteomic analysis of Fusarium sp. NF01 revealed a multi-level regulatory machinery for lignite biodegradation," Energy, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:energy:v:250:y:2022:i:c:s0360544222006661
    DOI: 10.1016/j.energy.2022.123763
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222006661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Yao & Liu, Ya-Juan & Meng, Shu-Juan & Kiran, Esra Uçkun & Liu, Yu, 2016. "Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion," Applied Energy, Elsevier, vol. 179(C), pages 1131-1137.
    2. Guo, Hongguang & Zhang, Yujie & Zhang, Yiwen & Li, Xingfeng & Li, Zhigang & Liang, Weiguo & Huang, Zaixing & Urynowicz, Michael & Ali, Muhammad Ishtiaq, 2021. "Feasibility study of enhanced biogenic coalbed methane production by super-critical CO2 extraction," Energy, Elsevier, vol. 214(C).
    3. Yin, Sudong & Tao, Xiuxiang & Shi, Kaiyi & Tan, Zhongchao, 2009. "Biosolubilisation of Chinese lignite," Energy, Elsevier, vol. 34(6), pages 775-781.
    4. Jin, Xianchun & Song, Jianing & Liu, Gao-Qiang, 2020. "Bioethanol production from rice straw through an enzymatic route mediated by enzymes developed in-house from Aspergillus fumigatus," Energy, Elsevier, vol. 190(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jie & Liu, Xiangrong & Yang, Zaiwen & Zhao, Shunsheng, 2023. "Biodegradation of Dananhu low-rank coal by Planomicrobium huatugouensis: Target metabolites possessing degradation abilities and their biodegradation pathways," Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    2. Xiaolong Lin & Zongmu Yao & Xinguang Wang & Shangqi Xu & Chunjie Tian & Lei Tian, 2021. "Water-Covered Depth with the Freeze–Thaw Cycle Influences Fungal Communities on Rice Straw Decomposition," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    3. Chowdhury, M.M.I. & Nakhla, G. & Zhu, J., 2017. "Ultrasonically enhanced anaerobic digestion of thickened waste activated sludge using fluidized bed reactors," Applied Energy, Elsevier, vol. 204(C), pages 807-818.
    4. Jin, Xianchun & Ma, Jiangshan & Song, Jianing & Liu, Gao-Qiang, 2021. "Promoted bioethanol production through fed-batch semisimultaneous saccharification and fermentation at a high biomass load of sodium carbonate-pretreated rice straw," Energy, Elsevier, vol. 226(C).
    5. Georgia-Christina Mitraka & Konstantinos N. Kontogiannopoulos & Maria Batsioula & George F. Banias & Anastasios I. Zouboulis & Panagiotis G. Kougias, 2022. "A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge," Energies, MDPI, vol. 15(18), pages 1-56, September.
    6. Zhang, Chen & Li, Tinggang & Su, Guandong & He, Jianzhong, 2020. "Enhanced direct fermentation from food waste to butanol and hydrogen by an amylolytic Clostridium," Renewable Energy, Elsevier, vol. 153(C), pages 522-529.
    7. Chen, Kang & Liu, Xianfeng & Nie, Baisheng & Zhang, Chengpeng & Song, Dazhao & Wang, Longkang & Yang, Tao, 2022. "Mineral dissolution and pore alteration of coal induced by interactions with supercritical CO2," Energy, Elsevier, vol. 248(C).
    8. Kyriakou, Maria & Patsalou, Maria & Xiaris, Nikolas & Tsevis, Athanasios & Koutsokeras, Loukas & Constantinides, Georgios & Koutinas, Michalis, 2020. "Enhancing bioproduction and thermotolerance in Saccharomyces cerevisiae via cell immobilization on biochar: Application in a citrus peel waste biorefinery," Renewable Energy, Elsevier, vol. 155(C), pages 53-64.
    9. Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Brémond, Ulysse & de Buyer, Raphaëlle & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2018. "Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 583-604.
    11. Yan, Mi & Liu, Yu & Song, Yucai & Xu, Aiming & Zhu, Gaojun & Jiang, Jiahao & Hantoko, Dwi, 2022. "Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification," Energy, Elsevier, vol. 242(C).
    12. Sangmin Kim & Seung-Gyun Woo & Joonyeob Lee & Dae-Hee Lee & Seokhwan Hwang, 2019. "Evaluation of Feasibility of Using the Bacteriophage T4 Lysozyme to Improve the Hydrolysis and Biochemical Methane Potential of Secondary Sludge," Energies, MDPI, vol. 12(19), pages 1-14, September.
    13. Barua, Visva Bharati & Rathore, Vidhi & Kalamdhad, Ajay S., 2019. "Anaerobic co-digestion of water hyacinth and banana peels with and without thermal pretreatment," Renewable Energy, Elsevier, vol. 134(C), pages 103-112.
    14. Sun, Fengrui & Liu, Dameng & Cai, Yidong & Qiu, Yongkai, 2023. "A micro-macro coupled permeability model for gas transport in coalbed methane reservoirs," Energy, Elsevier, vol. 284(C).
    15. Zhao, Weizhong & Su, Xianbo & Xia, Daping & Hou, Shihui & Wang, Qian & Zhou, Yixuan, 2022. "Enhanced coalbed methane recovery by the modification of coal reservoir under the supercritical CO2 extraction and anaerobic digestion," Energy, Elsevier, vol. 259(C).
    16. Wen, Hu & Mi, Wansheng & Fan, Shixing & Liu, Mingyang & Cheng, Xiaojiao & Wang, Hu, 2023. "Determining the reasonable volume required to inject liquid CO2 into a single hole and displace CH4 within the coal seam in bedding boreholes: case study of SangShuPing coal mine," Energy, Elsevier, vol. 266(C).
    17. Jin, Xianchun & Ma, Jiangshan & Song, Jianing & Liu, Gao-Qiang, 2020. "Saccharification and detoxification of Na2CO3 pretreated rice straw with on-site manufactured enzymes secreted by Aspergillus fumigatus to enhance bioethanol yield," Renewable Energy, Elsevier, vol. 166(C), pages 117-124.
    18. Sun, Fengrui & Liu, Dameng & Cai, Yidong & Qiu, Yongkai, 2023. "Coal rank-pressure coupling control mechanism on gas adsorption/desorption in coalbed methane reservoirs," Energy, Elsevier, vol. 270(C).
    19. Ma, Chaonan & Liu, Jianyong & Ye, Min & Zou, Lianpei & Qian, Guangren & Li, Yu-You, 2018. "Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 700-709.
    20. Ma, Yingqun & Cai, Weiwei & Liu, Yu, 2017. "An integrated engineering system for maximizing bioenergy production from food waste," Applied Energy, Elsevier, vol. 206(C), pages 83-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:250:y:2022:i:c:s0360544222006661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.