IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v249y2022ics0360544222005163.html
   My bibliography  Save this article

Developing an exhaustive optimal maintenance schedule for offshore wind turbines based on risk-assessment, technical factors and cost-effective evaluation

Author

Listed:
  • Nguyen, Thi-Anh-Tuyet
  • Chou, Shuo-Yan
  • Yu, Tiffany Hui-Kuang

Abstract

Maintenance scheduling is one of the most challenging issues of offshore wind system, because the maintenance decision may impact greatly to cost-effectiveness. The process of maintenance decision making is confronting with uncertainties, including economic, technical, safety and environmental uncertain that make conventional maintenance optimization insufficient. The conventional maintenance optimization in the existing studies only consider factors related to technical and economic aspects in maintenance optimization. No existing study analyzes the effects of health and safety risks of the technicians and the environmental risks of the maintenance activities under the impacts of the complex weather conditions in the marine environment. The occurrence of environmental and safety risks causes catastrophic consequences, especially in harsh weather condition, that make the conventional maintenance techniques insufficient. This paper proposes an approach to optimize maintenance schedule that is designed to maximize the cost-effectiveness while minimizing the environmental and safety risks. The proposed model utilizes fuzzy probabilities to assess the environmental and safety risks. This paper also presents a mathematical model to derive the optimal individual maintenance schedule and group maintenance schedule for various components by considering a number of impacted factors. The results demonstrated that the number of maintenance activities when considering environmental and safety risks is higher than that without considering environmental and safety risks. For example, the number of maintenance activities with and without considering the environmental and safety risks at the location of 25 km of distance to shore is 75 and 86 activities respectively. The effect of risk-assessment model was more apparent for vulnerable components and was less apparent for the durable components.

Suggested Citation

  • Nguyen, Thi-Anh-Tuyet & Chou, Shuo-Yan & Yu, Tiffany Hui-Kuang, 2022. "Developing an exhaustive optimal maintenance schedule for offshore wind turbines based on risk-assessment, technical factors and cost-effective evaluation," Energy, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222005163
    DOI: 10.1016/j.energy.2022.123613
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222005163
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123613?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eunshin Byon, 2013. "Wind turbine operations and maintenance: a tractable approximation of dynamic decision making," IISE Transactions, Taylor & Francis Journals, vol. 45(11), pages 1188-1201.
    2. Martin, Rebecca & Lazakis, Iraklis & Barbouchi, Sami & Johanning, Lars, 2016. "Sensitivity analysis of offshore wind farm operation and maintenance cost and availability," Renewable Energy, Elsevier, vol. 85(C), pages 1226-1236.
    3. Zhang, Chen & Gao, Wei & Yang, Tao & Guo, Sheng, 2019. "Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management," Renewable Energy, Elsevier, vol. 133(C), pages 703-711.
    4. Stålhane, Magnus & Halvorsen-Weare, Elin E. & Nonås, Lars Magne & Pantuso, Giovanni, 2019. "Optimizing vessel fleet size and mix to support maintenance operations at offshore wind farms," European Journal of Operational Research, Elsevier, vol. 276(2), pages 495-509.
    5. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2018. "Impact of government subsidies on economic feasibility of offshore wind system: Implications for Taiwan energy policies," Applied Energy, Elsevier, vol. 217(C), pages 336-345.
    6. Ahmed Raza & Vladimir Ulansky, 2019. "Optimal Preventive Maintenance of Wind Turbine Components with Imperfect Continuous Condition Monitoring," Energies, MDPI, vol. 12(19), pages 1-24, October.
    7. Dui, Hongyan & Si, Shubin & Yam, Richard C.M., 2017. "A cost-based integrated importance measure of system components for preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 98-104.
    8. Zhou, P. & Yin, P.T., 2019. "An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 1-9.
    9. Zhu, Wenjin & Castanier, Bruno & Bettayeb, Belgacem, 2019. "A dynamic programming-based maintenance model of offshore wind turbine considering logistic delay and weather condition," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    10. Shafiee, Mahmood & Finkelstein, Maxim & Bérenguer, Christophe, 2015. "An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 463-471.
    11. Sarker, Bhaba R. & Faiz, Tasnim Ibn, 2016. "Minimizing maintenance cost for offshore wind turbines following multi-level opportunistic preventive strategy," Renewable Energy, Elsevier, vol. 85(C), pages 104-113.
    12. Shafiee, Mahmood, 2015. "Maintenance logistics organization for offshore wind energy: Current progress and future perspectives," Renewable Energy, Elsevier, vol. 77(C), pages 182-193.
    13. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2019. "Improved maintenance optimization of offshore wind systems considering effects of government subsidies, lost production and discounted cost model," Energy, Elsevier, vol. 187(C).
    14. Tian, Zhigang & Jin, Tongdan & Wu, Bairong & Ding, Fangfang, 2011. "Condition based maintenance optimization for wind power generation systems under continuous monitoring," Renewable Energy, Elsevier, vol. 36(5), pages 1502-1509.
    15. Sathishkumar Nachimuthu & Ming J. Zuo & Yi Ding, 2019. "A Decision-making Model for Corrective Maintenance of Offshore Wind Turbines Considering Uncertainties," Energies, MDPI, vol. 12(8), pages 1-13, April.
    16. Amiri, S. & Honarvar, M. & sadegheih, A., 2018. "Providing an integrated Model for Planning and Scheduling Energy Hubs and preventive maintenance," Energy, Elsevier, vol. 163(C), pages 1093-1114.
    17. Helene Seyr & Michael Muskulus, 2019. "Use of Markov Decision Processes in the Evaluation of Corrective Maintenance Scheduling Policies for Offshore Wind Farms," Energies, MDPI, vol. 12(15), pages 1-19, August.
    18. Masoud Asgarpour & John Dalsgaard Sørensen, 2018. "Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms," Energies, MDPI, vol. 11(2), pages 1-17, January.
    19. Erguido, A. & Crespo Márquez, A. & Castellano, E. & Gómez Fernández, J.F., 2017. "A dynamic opportunistic maintenance model to maximize energy-based availability while reducing the life cycle cost of wind farms," Renewable Energy, Elsevier, vol. 114(PB), pages 843-856.
    20. Ding, Fangfang & Tian, Zhigang, 2012. "Opportunistic maintenance for wind farms considering multi-level imperfect maintenance thresholds," Renewable Energy, Elsevier, vol. 45(C), pages 175-182.
    21. de Azevedo, Henrique Dias Machado & Araújo, Alex Maurício & Bouchonneau, Nadège, 2016. "A review of wind turbine bearing condition monitoring: State of the art and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 368-379.
    22. Zhang, Chen & Gao, Wei & Guo, Sheng & Li, Youliang & Yang, Tao, 2017. "Opportunistic maintenance for wind turbines considering imperfect, reliability-based maintenance," Renewable Energy, Elsevier, vol. 103(C), pages 606-612.
    23. Dai, Lijuan & Ehlers, Sören & Rausand, Marvin & Utne, Ingrid Bouwer, 2013. "Risk of collision between service vessels and offshore wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 18-31.
    24. Jinhe Wang & Xiaohong Zhang & Jianchao Zeng & Yunzheng Zhang, 2020. "Optimal dynamic imperfect preventive maintenance of wind turbines based on general renewal processes," International Journal of Production Research, Taylor & Francis Journals, vol. 58(22), pages 6791-6810, November.
    25. Irawan, Chandra Ade & Ouelhadj, Djamila & Jones, Dylan & Stålhane, Magnus & Sperstad, Iver Bakken, 2017. "Optimisation of maintenance routing and scheduling for offshore wind farms," European Journal of Operational Research, Elsevier, vol. 256(1), pages 76-89.
    26. Walgern, Julia & Peters, Lennart & Madlener, Reinhard, 2017. "Economic Evaluation of Maintenance Strategies for Offshore Wind Turbines Based on Condition Monitoring Systems," FCN Working Papers 8/2017, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    27. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Xiao & Li, Yuanzheng & Zhao, Yong & Yu, Yaowen & Lian, Yicheng & Hao, Guokai & Jiang, Lin, 2023. "Data-driven nested robust optimization for generation maintenance scheduling considering temporal correlation," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    3. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J. & Coraddu, A., 2023. "Opportunistic maintenance for offshore wind: A review and proposal of future framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2019. "Improved maintenance optimization of offshore wind systems considering effects of government subsidies, lost production and discounted cost model," Energy, Elsevier, vol. 187(C).
    5. Shuo-Yan Chou & Xuan Loc Pham & Thi Anh Tuyet Nguyen & Tiffany Hui-Kuang Yu, 2023. "Optimal maintenance planning with special emphasis on deterioration process and vessel routing for offshore wind systems," Energy & Environment, , vol. 34(4), pages 739-763, June.
    6. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    7. Juan Izquierdo & Adolfo Crespo Márquez & Jone Uribetxebarria & Asier Erguido, 2019. "Framework for Managing Maintenance of Wind Farms Based on a Clustering Approach and Dynamic Opportunistic Maintenance," Energies, MDPI, vol. 12(11), pages 1-17, May.
    8. Zhang, Chen & Gao, Wei & Yang, Tao & Guo, Sheng, 2019. "Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management," Renewable Energy, Elsevier, vol. 133(C), pages 703-711.
    9. Shafiee, Mahmood & Sørensen, John Dalsgaard, 2019. "Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    10. Vu, Hai Canh & Do, Phuc & Fouladirad, Mitra & Grall, Antoine, 2020. "Dynamic opportunistic maintenance planning for multi-component redundant systems with various types of opportunities," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    11. Pliego Marugán, Alberto & García Márquez, Fausto Pedro & Pinar Pérez, Jesús María, 2022. "A techno-economic model for avoiding conflicts of interest between owners of offshore wind farms and maintenance suppliers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Zhou, P. & Yin, P.T., 2019. "An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 1-9.
    13. Yu-Chung Tsao & Thuy-Linh Vu, 2023. "Electricity pricing, capacity, and predictive maintenance considering reliability," Annals of Operations Research, Springer, vol. 322(2), pages 991-1011, March.
    14. Bakir, I. & Yildirim, M. & Ursavas, E., 2021. "An integrated optimization framework for multi-component predictive analytics in wind farm operations & maintenance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2023. "A closed-loop maintenance strategy for offshore wind farms: Incorporating dynamic wind farm states and uncertainty-awareness in decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    16. Erguido, A. & Crespo Márquez, A. & Castellano, E. & Gómez Fernández, J.F., 2017. "A dynamic opportunistic maintenance model to maximize energy-based availability while reducing the life cycle cost of wind farms," Renewable Energy, Elsevier, vol. 114(PB), pages 843-856.
    17. Yuri Merizalde & Luis Hernández-Callejo & Oscar Duque-Perez & Víctor Alonso-Gómez, 2019. "Maintenance Models Applied to Wind Turbines. A Comprehensive Overview," Energies, MDPI, vol. 12(2), pages 1-41, January.
    18. Zhu, Wenjin & Castanier, Bruno & Bettayeb, Belgacem, 2019. "A dynamic programming-based maintenance model of offshore wind turbine considering logistic delay and weather condition," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    19. Abdollahzadeh, Hadi & Atashgar, Karim & Abbasi, Morteza, 2016. "Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups," Renewable Energy, Elsevier, vol. 88(C), pages 247-261.
    20. Shafiee, Mahmood, 2015. "Maintenance logistics organization for offshore wind energy: Current progress and future perspectives," Renewable Energy, Elsevier, vol. 77(C), pages 182-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222005163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.