IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipcs0360544221022337.html
   My bibliography  Save this article

Effects of alkali and alkaline earth metals of inherent minerals on Fe-catalyzed coal pyrolysis

Author

Listed:
  • He, Renze
  • Deng, Jin
  • Deng, Xiaoling
  • Xie, Xiaoguang
  • Li, Yun
  • Yuan, Shenfu

Abstract

In this work, the effects of alkali and alkaline earth metals (AAEM (K, Na, Ca and Mg)) on Fe (5 wt%) loaded-coal pyrolysis were conducted using the fixed-bed reactor at 700 °C with 0.1 MPa N2. The coal was pretreated by HCl and HF aqueous solutions (De-2 coal). These effects were investigated with AAEM additive into Fe loaded De-2 coal. The results indicate that K, Na, Ca and Mg (0.1 wt%-1.5 wt%) enhanced the catalytic effect of Fe catalyst, leading to the high H2 selectivity (59.34 ml/g →85.94 ml/g), as well as the low yield toward CO2 (157.50 ml/g →148.62 ml/g), and the catalytic activity follows the order of Na ≈ K > Ca > Mg. Characterization results reveal that the inherent AAEM promote the reduction of Fe species and the dispersion of Fe particles. The reason for that was AAEM combined with oxygen-containing functional group generated C–O-AAEM and COO-AAEM, and released active oxygen sites to activate carbon sites, leading to Fe catalyst bound with active oxygen sites formed iron oxide and Fe-(O)–C on char surface. This study was helpful to understand the promotion mechanism of AAEM on Fe catalyzed coal pyrolysis.

Suggested Citation

  • He, Renze & Deng, Jin & Deng, Xiaoling & Xie, Xiaoguang & Li, Yun & Yuan, Shenfu, 2022. "Effects of alkali and alkaline earth metals of inherent minerals on Fe-catalyzed coal pyrolysis," Energy, Elsevier, vol. 238(PC).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022337
    DOI: 10.1016/j.energy.2021.121985
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221022337
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Zhao & Chen, Shiyi & Hu, Jun & Chen, Aimin & Rony, Asif Hasan & Russell, Christopher K. & Xiang, Wenguo & Fan, Maohong & Darby Dyar, M. & Dklute, Elizabeth C., 2018. "Ca2Fe2O5: A promising oxygen carrier for CO/CH4 conversion and almost-pure H2 production with inherent CO2 capture over a two-step chemical looping hydrogen generation process," Applied Energy, Elsevier, vol. 211(C), pages 431-442.
    2. Azadeh, A. & Tarverdian, S., 2007. "Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption," Energy Policy, Elsevier, vol. 35(10), pages 5229-5241, October.
    3. Yan, Shuai & Bi, Jicheng & Qu, Xuan, 2017. "The behavior of catalysts in hydrogasification of sub-bituminous coal in pressured fluidized bed," Applied Energy, Elsevier, vol. 206(C), pages 401-412.
    4. Wang, Dechao & Jin, Lijun & Li, Yang & Yao, Demeng & Wang, Jiaofei & Hu, Haoquan, 2018. "Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe2O3," Energy, Elsevier, vol. 162(C), pages 542-553.
    5. Siriwardane, Ranjani & Tian, Hanjing & Miller, Duane & Richards, George, 2015. "Fluidized bed testing of commercially prepared MgO-promoted hematite and CuO–Fe2O3 mixed metal oxide oxygen carriers for methane and coal chemical looping combustion," Applied Energy, Elsevier, vol. 157(C), pages 348-357.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Tao & Lu, Qiuxiang & Xiang, Hao & Luo, Xiulin & Shenfu, Yuan, 2023. "Ca promoted Ni–Co bimetallic catalyzed coal pyrolysis and char steam gasification," Energy, Elsevier, vol. 282(C).
    2. Niu, Jian & Miao, Jiawen & Zhang, Huirong & Guo, Yanxia & Li, Linbo & Cheng, Fangqin, 2023. "Focusing on the impact of inherent minerals in coal on activated carbon production and its performance: The role of trace sodium on SO2 and/or NO removal," Energy, Elsevier, vol. 263(PB).
    3. Ban, Yanpeng & Jin, Lijun & Wang, Kechao & Li, Yang & Yang, He & Hu, Haoquan, 2023. "Catalytic effect of industrial waste carbide slag on pyrolysis of low-rank coal," Energy, Elsevier, vol. 265(C).
    4. Deng, Jin & Gao, Shan & Yang, Tai & Ma, Duo & Luo, Xiaodong & Liu, Hui & Yuan, Shenfu, 2023. "Investigating the promotion of Fe–Co catalyst by alkali and alkaline earth metals of inherent metal minerals for biomass pyrolysis," Renewable Energy, Elsevier, vol. 213(C), pages 134-147.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    2. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    3. Muhammad Fayaz & DoHyeun Kim, 2018. "Energy Consumption Optimization and User Comfort Management in Residential Buildings Using a Bat Algorithm and Fuzzy Logic," Energies, MDPI, vol. 11(1), pages 1-22, January.
    4. Lu, Xuao & Rahman, Ryad A. & Lu, Dennis Y. & Ridha, Firas N. & Duchesne, Marc A. & Tan, Yewen & Hughes, Robin W., 2016. "Pressurized chemical looping combustion with CO: Reduction reactivity and oxygen-transport capacity of ilmenite ore," Applied Energy, Elsevier, vol. 184(C), pages 132-139.
    5. Görke, R.H. & Hu, W. & Dunstan, M.T. & Dennis, J.S. & Scott, S.A., 2018. "Exploration of the material property space for chemical looping air separation applied to carbon capture and storage," Applied Energy, Elsevier, vol. 212(C), pages 478-488.
    6. Lu, Qiuxiang & zhang, Luqi & Chen, Xin & Li, Kuo & Meng, Lingshuai & Xie, Xiaoguang & Yuan, Shenfu & Gao, Yuchen & Zhou, Xinran, 2022. "Synergistic effect of volatile inherent minerals on catalytic pyrolysis of wheat straw over a Fe–Ca–Ni catalyst," Energy, Elsevier, vol. 253(C).
    7. Ridha, Firas N. & Duchesne, Marc A. & Lu, Xuao & Lu, Dennis Y. & Filippou, Dimitrios & Hughes, Robin W., 2016. "Characterization of an ilmenite ore for pressurized chemical looping combustion," Applied Energy, Elsevier, vol. 163(C), pages 323-333.
    8. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    9. Zhen-Yao Chen & R. J. Kuo, 2019. "Combining SOM and evolutionary computation algorithms for RBF neural network training," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1137-1154, March.
    10. Golberg, Alexander, 2015. "Environmental exergonomics for sustainable design and analysis of energy systems," Energy, Elsevier, vol. 88(C), pages 314-321.
    11. Xu, Qingyang & Sun, Feihu & Cai, Qiran & Liu, Li-Jing & Zhang, Kun & Liang, Qiao-Mei, 2022. "Assessment of the influence of demand-side responses on high-proportion renewable energy system: An evidence of Qinghai, China," Renewable Energy, Elsevier, vol. 190(C), pages 945-958.
    12. Zhu, Min & Chen, Shiyi & Soomro, Ahsanullah & Hu, Jun & Sun, Zhao & Ma, Shiwei & Xiang, Wenguo, 2018. "Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation," Applied Energy, Elsevier, vol. 225(C), pages 912-921.
    13. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
    14. Shen, Peiliang & Jiang, Yi & Zhang, Yangyang & Liu, Songhui & Xuan, Dongxing & Lu, Jianxin & Zhang, Shipeng & Poon, Chi Sun, 2023. "Production of aragonite whiskers by carbonation of fine recycled concrete wastes: An alternative pathway for efficient CO2 sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    15. Zhu, Yao & Wang, Qinhui & Li, Kaikun & Cen, Jianmeng & Fang, Mengxiang & Ying, Chengdong, 2022. "Study on pressurized isothermal pyrolysis characteristics of low-rank coal in a pressurized micro-fluidized bed reaction analyzer," Energy, Elsevier, vol. 240(C).
    16. Li, Fengyun & Zheng, Haofeng & Li, Xingmei & Yang, Fei, 2021. "Day-ahead city natural gas load forecasting based on decomposition-fusion technique and diversified ensemble learning model," Applied Energy, Elsevier, vol. 303(C).
    17. Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
    18. Wang, Lian & Yao, Yuedong & Wang, Kongjie & Adenutsi, Caspar Daniel & Zhao, Guoxiang & Lai, Fengpeng, 2022. "Hybrid application of unsupervised and supervised learning in forecasting absolute open flow potential for shale gas reservoirs," Energy, Elsevier, vol. 243(C).
    19. Bermúdez, Alfredo & Shabani, Mohsen, 2022. "Numerical simulation of gas composition tracking in a gas transportation network," Energy, Elsevier, vol. 247(C).
    20. Sun, Zhao & Russell, Christopher K. & Fan, Maohong, 2021. "Effect of calcium ferrites on carbon dioxide gasification reactivity and kinetics of pine wood derived char," Renewable Energy, Elsevier, vol. 163(C), pages 445-452.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.