IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v227y2021ics0360544221006198.html
   My bibliography  Save this article

Assessing the use of copper slags as thermal energy storage material for packed-bed systems

Author

Listed:
  • Calderón-Vásquez, Ignacio
  • Segovia, Valentina
  • Cardemil, José M.
  • Barraza, Rodrigo

Abstract

Thermocline tanks using packed-bed of rocks have become feasible candidates for improving the performance of Concentrated Solar Power plants, enabling high operating temperatures and reduced capital costs when industrial byproducts are employed as filler materials and low-cost working fluids, being competitive against molten salts thermal storage systems. The present work assesses the potential of using copper slags in packed-bed systems as filler material. Through a thermal characterization, it is demonstrated that copper slags show similar properties to other slags proposed in the literature for thermal storage medium and better thermal capacity (1.4–1.5 J/(gK)). A heat transfer model was developed to predict the cyclic behavior of a packed-bed storage using copper slags and employed in a parametric analysis to assess the impact of storage dimensions on 1st and 2nd law efficiencies for different storage materials, allowing to identify several design considerations depending on tank’s volume. The main findings indicate that the high thermal capacity of copper slags favors the development of a steeper thermocline, keeping a low rate of exergy loss at storage’s outlet, and also higher energy density stored of 138 kWh/m3 against 129 kWh/m3 of other byproducts under similar storage dimensions.

Suggested Citation

  • Calderón-Vásquez, Ignacio & Segovia, Valentina & Cardemil, José M. & Barraza, Rodrigo, 2021. "Assessing the use of copper slags as thermal energy storage material for packed-bed systems," Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221006198
    DOI: 10.1016/j.energy.2021.120370
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221006198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Shobhana & Sørensen, Kim & Condra, Thomas & Batz, Søren Søndergaard & Kristensen, Kristian, 2019. "Investigation on transient performance of a large-scale packed-bed thermal energy storage," Applied Energy, Elsevier, vol. 239(C), pages 1114-1129.
    2. Anderson, Ryan & Shiri, Samira & Bindra, Hitesh & Morris, Jeffrey F., 2014. "Experimental results and modeling of energy storage and recovery in a packed bed of alumina particles," Applied Energy, Elsevier, vol. 119(C), pages 521-529.
    3. Rovense, F. & Reyes-Belmonte, M.A. & González-Aguilar, J. & Amelio, M. & Bova, S. & Romero, M., 2019. "Flexible electricity dispatch for CSP plant using un-fired closed air Brayton cycle with particles based thermal energy storage system," Energy, Elsevier, vol. 173(C), pages 971-984.
    4. Zanganeh, G. & Pedretti, A. & Haselbacher, A. & Steinfeld, A., 2015. "Design of packed bed thermal energy storage systems for high-temperature industrial process heat," Applied Energy, Elsevier, vol. 137(C), pages 812-822.
    5. González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
    6. Ortega-Fernández, Iñigo & Calvet, Nicolas & Gil, Antoni & Rodríguez-Aseguinolaza, Javier & Faik, Abdessamad & D'Aguanno, Bruno, 2015. "Thermophysical characterization of a by-product from the steel industry to be used as a sustainable and low-cost thermal energy storage material," Energy, Elsevier, vol. 89(C), pages 601-609.
    7. Oró, Eduard & Castell, Albert & Chiu, Justin & Martin, Viktoria & Cabeza, Luisa F., 2013. "Stratification analysis in packed bed thermal energy storage systems," Applied Energy, Elsevier, vol. 109(C), pages 476-487.
    8. Vignarooban, K. & Xu, Xinhai & Arvay, A. & Hsu, K. & Kannan, A.M., 2015. "Heat transfer fluids for concentrating solar power systems – A review," Applied Energy, Elsevier, vol. 146(C), pages 383-396.
    9. Li, Peiwen & Van Lew, Jon & Chan, Cholik & Karaki, Wafaa & Stephens, Jake & O’Brien, J.E., 2012. "Similarity and generalized analysis of efficiencies of thermal energy storage systems," Renewable Energy, Elsevier, vol. 39(1), pages 388-402.
    10. Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
    11. Palacios, A. & Barreneche, C. & Navarro, M.E. & Ding, Y., 2020. "Thermal energy storage technologies for concentrated solar power – A review from a materials perspective," Renewable Energy, Elsevier, vol. 156(C), pages 1244-1265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Weimin & He, Zhaoyu & Zhang, Yuting & Zhang, Peng, 2022. "Thermal performance of the packed bed thermal energy storage system with encapsulated phase change material," Renewable Energy, Elsevier, vol. 196(C), pages 1345-1356.
    2. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Rose, Andrew & Taylor, Robert A., 2022. "Optical analysis of a semi-transparent packed bed of spheres for next-generation volumetric solar receivers," Energy, Elsevier, vol. 252(C).
    3. Zhou, Hao & Lai, Zhenya & Cen, Kefa, 2022. "Experimental study on energy storage performances of packed bed with different solid materials," Energy, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Pascual & Pilar Lisbona & Luis M. Romeo, 2022. "Thermal Energy Storage in Concentrating Solar Power Plants: A Review of European and North American R&D Projects," Energies, MDPI, vol. 15(22), pages 1-32, November.
    2. Calderón-Vásquez, Ignacio & Cortés, Eduardo & García, Jesús & Segovia, Valentina & Caroca, Alejandro & Sarmiento, Cristóbal & Barraza, Rodrigo & Cardemil, José M., 2021. "Review on modeling approaches for packed-bed thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    4. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    5. Turrini, Sebastiano & Bettonte, Marco & Eccher, Massimo & Grigiante, Maurizio & Miotello, Antonio & Brusa, Roberto S., 2018. "An innovative small-scale prototype plant integrating a solar dish concentrator with a molten salt storage system," Renewable Energy, Elsevier, vol. 123(C), pages 150-161.
    6. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    7. Chacartegui, R. & Alovisio, A. & Ortiz, C. & Valverde, J.M. & Verda, V. & Becerra, J.A., 2016. "Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle," Applied Energy, Elsevier, vol. 173(C), pages 589-605.
    8. Laura Boquera & David Pons & Ana Inés Fernández & Luisa F. Cabeza, 2021. "Characterization of Supplementary Cementitious Materials and Fibers to Be Implemented in High Temperature Concretes for Thermal Energy Storage (TES) Application," Energies, MDPI, vol. 14(16), pages 1-26, August.
    9. Korba, David & Huang, Wei & Randhir, Kelvin & Petrasch, Joerg & Klausner, James & AuYeung, Nick & Li, Like, 2022. "A continuum model for heat and mass transfer in moving-bed reactors for thermochemical energy storage," Applied Energy, Elsevier, vol. 313(C).
    10. Yang, Bei & Bai, Fengwu & Wang, Yan & Wang, Zhifeng, 2019. "Study on standby process of an air-based solid packed bed for flexible high-temperature heat storage: Experimental results and modelling," Applied Energy, Elsevier, vol. 238(C), pages 135-146.
    11. Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Perez-Maqueda, L.A. & Giménez, P., 2019. "The Calcium-Looping (CaCO3/CaO) process for thermochemical energy storage in Concentrating Solar Power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    12. Odenthal, Christian & Steinmann, Wolf-Dieter & Zunft, Stefan, 2020. "Analysis of a horizontal flow closed loop thermal energy storage system in pilot scale for high temperature applications – Part I: Experimental investigation of the plant," Applied Energy, Elsevier, vol. 263(C).
    13. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Shao, Wei & Cui, Zheng & Chen, Zhao-you & Wang, Jing-chen & Liu, Yu & Ren, Xiao-han & Luo, Feng, 2019. "Experimental and numerical measurements of the channel packed with disordered cement granules regarding the heat transfer performance," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    16. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    17. Bravo, Ruben & Ortiz, Carlos & Chacartegui, Ricardo & Friedrich, Daniel, 2021. "Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage," Applied Energy, Elsevier, vol. 282(PB).
    18. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    19. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    20. Feng, Penghui & Wu, Zhen & Zhang, Yang & Yang, Fusheng & Wang, Yuqi & Zhang, Zaoxiao, 2018. "Multi-level configuration and optimization of a thermal energy storage system using a metal hydride pair," Applied Energy, Elsevier, vol. 217(C), pages 25-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221006198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.