IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220318430.html
   My bibliography  Save this article

Effect of pyrolysis temperature on bamboo char combustion: Reactivity, kinetics and thermodynamics

Author

Listed:
  • Tong, Wei
  • Cai, Zelong
  • Liu, Qingcai
  • Ren, Shan
  • Kong, Ming

Abstract

The combustion behavior of bamboo char (BC) under pyrolysis temperatures (673–1173 K) is studied by non-isothermal thermogravimetric analysis. Results show pyrolysis temperature lowers the ignition and burnout performance of biochar. The combustion reactivity firstly increases and then decreases, and BC-973 is the best. Kinetic models of Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose calculate the activation energy (E), integral master-plots method determines reaction equation is the reaction order that when the heating rate is less than 12 K/min, reaction orders firstly decrease and then increase with pyrolysis temperature, and reaction orders are around 1 for 24 K/min. Thermodynamic parameters (ΔH, ΔS and ΔG) are calculated, and the prediction equations about E, ΔH, ΔS and ΔG are proposed. Meanwhile, activation energy under first order reaction and experimental equation are compared, results show that average E values under first order reaction are greater in 773–973 K, and the rest of pyrolysis temperatures are adverse.

Suggested Citation

  • Tong, Wei & Cai, Zelong & Liu, Qingcai & Ren, Shan & Kong, Ming, 2020. "Effect of pyrolysis temperature on bamboo char combustion: Reactivity, kinetics and thermodynamics," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220318430
    DOI: 10.1016/j.energy.2020.118736
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220318430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Guangwei & Zhang, Jianliang & Shao, Jiugang & Liu, Zhengjian & Wang, Haiyang & Li, Xinyu & Zhang, Pengcheng & Geng, Weiwei & Zhang, Guohua, 2016. "Experimental and modeling studies on CO2 gasification of biomass chars," Energy, Elsevier, vol. 114(C), pages 143-154.
    2. Qambrani, Naveed Ahmed & Rahman, Md. Mukhlesur & Won, Seunggun & Shim, Soomin & Ra, Changsix, 2017. "Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 255-273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Zhang, Yuanbo & Zhang, Yutao & Li, Yaqing & Shi, Xueqiang & Che, Bo, 2022. "Determination of ignition temperature and kinetics and thermodynamics analysis of high-volatile coal based on differential derivative thermogravimetry," Energy, Elsevier, vol. 240(C).
    3. Cardarelli, Alessandro & Pinzi, Sara & Barbanera, Marco, 2022. "Effect of torrefaction temperature on spent coffee grounds thermal behaviour and kinetics," Renewable Energy, Elsevier, vol. 185(C), pages 704-716.
    4. Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    2. Cheng Huang & Xiuyun Sun & Lianjun Wang & Paul Storer & Kadambot H. M. Siddique & Zakaria M. Solaiman, 2021. "Nutrients Leaching from Tillage Soil Amended with Wheat Straw Biochar Influenced by Fertiliser Type," Agriculture, MDPI, vol. 11(11), pages 1-13, November.
    3. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    4. Hu, Qiang & Yang, Haiping & Wu, Zhiqiang & Lim, C. Jim & Bi, Xiaotao T. & Chen, Hanping, 2019. "Experimental and modeling study of potassium catalyzed gasification of woody char pellet with CO2," Energy, Elsevier, vol. 171(C), pages 678-688.
    5. Yang, Xinyu & Shao, Shanshan & Li, Xiaohua & Tang, Dong, 2023. "Catalytic transfer hydrogenation of bio-oil over biochar-based CuO catalyst using methanol as hydrogen donor," Renewable Energy, Elsevier, vol. 211(C), pages 21-30.
    6. Kung, Chih-Chun & Lan, Xiaolong & Yang, Yunxia & Kung, Shan-Shan & Chang, Meng-Shiuh, 2022. "Effects of green bonds on Taiwan's bioenergy development," Energy, Elsevier, vol. 238(PA).
    7. Hu, Sheng-Chun & Cheng, Jie & Wang, Wu-Ping & Zhu, Ya-Hong & Kang, Kang & Zhu, Ming-Qiang & Huang, Xiao-Hua, 2022. "Preparation and analysis of pyroligneous liquor, charcoal and gas from lacquer wood by carbonization method based on a biorefinery process," Energy, Elsevier, vol. 239(PA).
    8. Simone Marzeddu & Andrea Cappelli & Andrea Ambrosio & María Alejandra Décima & Paolo Viotti & Maria Rosaria Boni, 2021. "A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy," Land, MDPI, vol. 10(11), pages 1-29, November.
    9. Blignaut, James & Meissner, Heinz & Smith, Hendrik & du Toit, Linde, 2022. "An integrative bio-physical approach to determine the greenhouse gas emissions and carbon sinks of a cow and her offspring in a beef cattle operation: A system dynamics approach," Agricultural Systems, Elsevier, vol. 195(C).
    10. Du, Hong & Ma, Xiuyun & Jiang, Miao & Yan, Peifang & Zhang, Z.Conrad, 2021. "Autocatalytic co-upgrading of biochar and pyrolysis gas to syngas," Energy, Elsevier, vol. 221(C).
    11. Hachib Mohammad Tusar & Md. Kamal Uddin & Shamim Mia & Ayesha Akter Suhi & Samsuri Bin Abdul Wahid & Susilawati Kasim & Nor Asrina Sairi & Zahangir Alam & Farooq Anwar, 2023. "Biochar-Acid Soil Interactions—A Review," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    12. Safar, Michal & Lin, Bo-Jhih & Chen, Wei-Hsin & Langauer, David & Chang, Jo-Shu & Raclavska, H. & Pétrissans, Anélie & Rousset, Patrick & Pétrissans, Mathieu, 2019. "Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction," Applied Energy, Elsevier, vol. 235(C), pages 346-355.
    13. Kung, Chih-Chun & Mu, Jianhong E., 2019. "Prospect of China's renewable energy development from pyrolysis and biochar applications under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Marcin Sajdak & Roksana Muzyka & Grzegorz Gałko & Ewelina Ksepko & Monika Zajemska & Szymon Sobek & Dariusz Tercki, 2022. "Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-30, December.
    15. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    16. Zhou, Tianxing & Zhang, Weiwei & Luo, Siyi & Zuo, Zongliang & Ren, Dongdong, 2023. "The effect of ash fusion characteristic on the structure characteristics of carbon and the migration of potassium during rice straw high-temperature gasification process," Energy, Elsevier, vol. 284(C).
    17. Ngoc-Dan Cao, Thanh & Mukhtar, Hussnain & Yu, Chang-Ping & Bui, Xuan-Thanh & Pan, Shu-Yuan, 2022. "Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    18. Soreanu, G. & Tomaszewicz, M. & Fernandez-Lopez, M. & Valverde, J.L. & Zuwała, J. & Sanchez-Silva, L., 2017. "CO2 gasification process performance for energetic valorization of microalgae," Energy, Elsevier, vol. 119(C), pages 37-43.
    19. Kou, Mingyin & Zuo, Haibin & Ning, Xiaojun & Wang, Guangwei & Hong, Zhibin & Xu, Haifa & Wu, Shengli, 2019. "Thermogravimetric study on gasification kinetics of hydropyrolysis char derived from low rank coal," Energy, Elsevier, vol. 188(C).
    20. Liang, Wang & Wang, Guangwei & Xu, Runsheng & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Ye, Lian & Li, Jinhua & Jiang, Chunhe & Wang, Peng & Wang, Chuan, 2022. "Hydrothermal carbonization of forest waste into solid fuel: Mechanism and combustion behavior," Energy, Elsevier, vol. 246(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220318430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.