IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v209y2020ics0360544220315759.html
   My bibliography  Save this article

Implications of feeding or cofeeding bio-oil in the fluid catalytic cracker (FCC) in terms of regeneration kinetics and energy balance

Author

Listed:
  • Ochoa, Aitor
  • Vicente, Héctor
  • Sierra, Irene
  • Arandes, José M.
  • Castaño, Pedro

Abstract

Feeding or cofeeding bio-oil (biomass pyrolysis oil) into the fluid catalytic cracking (FCC) has a direct impact on product distribution, reaction kinetics and deactivation of this key catalytic valorization strategy. In this work, we have analysed the impact in terms of the catalyst regeneration kinetics and energy balance of the unit. These factors are linked to the holistic viability of revamped refineries turned into biorefineries. Deactivated catalysts were obtained in FCC experiments using vacuum gasoil and raw bio-oil. The regeneration kinetics of coke combustion were analysed in a thermobalance, whereas the heats dissipated throughout the combustion (high heating values) were analysed in a calorimeter. Overall, the regenerator does not require major design amendments to treat bio-oil. We found a linear correlation between the higher heating value of the reactants and the coke produced, which enables to predict possible scenarios in the FCC unit. When incorporating higher amounts of bio-oil, the heat balance of the unit changes significantly: the temperature in the regenerator rises up to +36 K, requiring significant energy input for heating the bio-oil but offering the chance to recover more (electrical) energy when the proportion of bio-oil is greater than ca. 50%.

Suggested Citation

  • Ochoa, Aitor & Vicente, Héctor & Sierra, Irene & Arandes, José M. & Castaño, Pedro, 2020. "Implications of feeding or cofeeding bio-oil in the fluid catalytic cracker (FCC) in terms of regeneration kinetics and energy balance," Energy, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315759
    DOI: 10.1016/j.energy.2020.118467
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220315759
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jahromi, Hossein & Agblevor, Foster A., 2017. "Upgrading of pinyon-juniper catalytic pyrolysis oil via hydrodeoxygenation," Energy, Elsevier, vol. 141(C), pages 2186-2195.
    2. Kim, Tae-Seung & Oh, Shinyoung & Kim, Jae-Young & Choi, In-Gyu & Choi, Joon Weon, 2014. "Study on the hydrodeoxygenative upgrading of crude bio-oil produced from woody biomass by fast pyrolysis," Energy, Elsevier, vol. 68(C), pages 437-443.
    3. Krutof, Anke & Hawboldt, Kelly, 2016. "Blends of pyrolysis oil, petroleum, and other bio-based fuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 406-419.
    4. Lee, Hyung Won & Jun, Bo Ram & Kim, Hannah & Kim, Do Heui & Jeon, Jong-Ki & Park, Sung Hoon & Ko, Chang Hyun & Kim, Tae-Wan & Park, Young-Kwon, 2015. "Catalytic hydrodeoxygenation of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolites," Energy, Elsevier, vol. 81(C), pages 33-40.
    5. Bertero, Melisa & Sedran, Ulises, 2016. "Immediate catalytic upgrading of soybean shell bio-oil," Energy, Elsevier, vol. 94(C), pages 171-179.
    6. Bertero, Melisa & Puente, Gabriela de la & Sedran, Ulises, 2013. "Products and coke from the conversion of bio-oil acids, esters, aldehydes and ketones over equilibrium FCC catalysts," Renewable Energy, Elsevier, vol. 60(C), pages 349-354.
    7. Onarheim, Kristin & Hannula, Ilkka & Solantausta, Yrjö, 2020. "Hydrogen enhanced biofuels for transport via fast pyrolysis of biomass: A conceptual assessment," Energy, Elsevier, vol. 199(C).
    8. Ong, Yee Kang & Bhatia, Subhash, 2010. "The current status and perspectives of biofuel production via catalytic cracking of edible and non-edible oils," Energy, Elsevier, vol. 35(1), pages 111-119.
    9. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
    2. Ly, Hoang Vu & Lim, Dong-Hyeon & Sim, Jae Wook & Kim, Seung-Soo & Kim, Jinsoo, 2018. "Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst," Energy, Elsevier, vol. 162(C), pages 564-575.
    3. Kasmuri, N.H. & Kamarudin, S.K. & Abdullah, S.R.S. & Hasan, H.A. & Som, A.Md., 2017. "Process system engineering aspect of bio-alcohol fuel production from biomass via pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 914-923.
    4. Li, Zhixia & Huang, Zhentao & Ding, Shilei & Li, Fuwei & Wang, Zhaohe & Lin, Hongfei & Chen, Congjin, 2018. "Catalytic conversion of waste cooking oil to fuel oil: Catalyst design and effect of solvent," Energy, Elsevier, vol. 157(C), pages 270-277.
    5. Ma, Wenchao & Liu, Bin & Zhang, Ruixue & Gu, Tianbao & Ji, Xiang & Zhong, Lei & Chen, Guanyi & Ma, Longlong & Cheng, Zhanjun & Li, Xiangping, 2018. "Co-upgrading of raw bio-oil with kitchen waste oil through fluid catalytic cracking (FCC)," Applied Energy, Elsevier, vol. 217(C), pages 233-240.
    6. Zhang, Zhaoxia & Bi, Peiyan & Jiang, Peiwen & Fan, Minghui & Deng, Shumei & Zhai, Qi & Li, Quanxin, 2015. "Production of gasoline fraction from bio-oil under atmospheric conditions by an integrated catalytic transformation process," Energy, Elsevier, vol. 90(P2), pages 1922-1930.
    7. Sannita, Eugenia & Aliakbarian, Bahar & Casazza, Alessandro A. & Perego, Patrizia & Busca, Guido, 2012. "Medium-temperature conversion of biomass and wastes into liquid products, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6455-6475.
    8. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    9. Xing, Shiyou & Yuan, Haoran & Huhetaoli, & Qi, Yujie & Lv, Pengmei & Yuan, Zhenhong & Chen, Yong, 2016. "Characterization of the decomposition behaviors of catalytic pyrolysis of wood using copper and potassium over thermogravimetric and Py-GC/MS analysis," Energy, Elsevier, vol. 114(C), pages 634-646.
    10. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    11. Xu, Junming & Jiang, Jianchun & Zhao, Jiaping, 2016. "Thermochemical conversion of triglycerides for production of drop-in liquid fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 331-340.
    12. Vasaki E, Madhu & Karri, Rama Rao & Ravindran, Gobinath & Paramasivan, Balasubramanian, 2021. "Predictive capability evaluation and optimization of sustainable biodiesel production from oleaginous biomass grown on pulp and paper industrial wastewater," Renewable Energy, Elsevier, vol. 168(C), pages 204-215.
    13. Wang, Zhi & Liu, Hui & Long, Yan & Wang, Jianxin & He, Xin, 2015. "Comparative study on alcohols–gasoline and gasoline–alcohols dual-fuel spark ignition (DFSI) combustion for high load extension and high fuel efficiency," Energy, Elsevier, vol. 82(C), pages 395-405.
    14. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    15. Li, Yuping & Huang, Xiaoming & Zhang, Qian & Chen, Lungang & Zhang, Xinghua & Wang, Tiejun & Ma, Longlong, 2015. "Hydrogenation and hydrodeoxygenation of difurfurylidene acetone to liquid alkanes over Raney Ni and the supported Pt catalysts," Applied Energy, Elsevier, vol. 160(C), pages 990-998.
    16. Li, Shiliang & Li, Yanqi & Wu, Jun & Wang, Zheng & Wang, Fang & Deng, Li & Nie, Kaili, 2020. "Synthesis of low pour point bio-aviation fuel from renewable abietic acid," Renewable Energy, Elsevier, vol. 155(C), pages 1042-1050.
    17. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    18. Jiheon Jun & Yi-Feng Su & James R. Keiser & John E. Wade & Michael D. Kass & Jack R. Ferrell & Earl Christensen & Mariefel V. Olarte & Dino Sulejmanovic, 2022. "Corrosion Compatibility of Stainless Steels and Nickel in Pyrolysis Biomass-Derived Oil at Elevated Storage Temperatures," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    19. Huang, Y. & McIlveen-Wright, D.R. & Rezvani, S. & Huang, M.J. & Wang, Y.D. & Roskilly, A.P. & Hewitt, N.J., 2013. "Comparative techno-economic analysis of biomass fuelled combined heat and power for commercial buildings," Applied Energy, Elsevier, vol. 112(C), pages 518-525.
    20. Bertero, Melisa & García, Juan Rafael & Falco, Marisa & Sedran, Ulises, 2019. "Equilibrium FCC catalysts to improve liquid products from biomass pyrolysis," Renewable Energy, Elsevier, vol. 132(C), pages 11-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.