IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v208y2020ics0360544220315061.html
   My bibliography  Save this article

Assessment and improvement of modeling the atmospheric attenuation based on aerosol optical depth information with applicability to solar tower plants

Author

Listed:
  • Polo, Jesús
  • Ballestrín, Jesús
  • Carra, Elena

Abstract

Accurate modeling of atmospheric attenuation phenomena is a crucial aspect for the performance of solar tower plants. The development of suitable models requires of reliable measurements of the extinction coefficient near surface. Continuous monitoring of the extinction coefficient at ground is being recorded at Plataforma Solar de Almería (PSA) facility in south-east Spain since July 2017 offering a unique and long experimental database for model assessment. This work presents the assessment of Polo’s model with over two years of ground measurements. In addition, a new corrected and improved version of the model is presented here with a very good performance, maintaining the versatility of the model. Hourly estimations of the atmospheric attenuation at PSA with the new version of the model resulted in a 6.1% of RMSE and very good agreements in both inter- and intra-annual variability is found. The new model proposed here is easy to be used in both ray-tracing, optimization software and performance tools commonly and widely used for modeling solar tower plants behavior and production. This new model offers a better and novel approach that can be used at any site where AOD information is available.

Suggested Citation

  • Polo, Jesús & Ballestrín, Jesús & Carra, Elena, 2020. "Assessment and improvement of modeling the atmospheric attenuation based on aerosol optical depth information with applicability to solar tower plants," Energy, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220315061
    DOI: 10.1016/j.energy.2020.118399
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220315061
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthias Themeßl & Andreas Gobiet & Georg Heinrich, 2012. "Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal," Climatic Change, Springer, vol. 112(2), pages 449-468, May.
    2. Wei, Xiudong & Lu, Zhenwu & Wang, Zhifeng & Yu, Weixing & Zhang, Hongxing & Yao, Zhihao, 2010. "A new method for the design of the heliostat field layout for solar tower power plant," Renewable Energy, Elsevier, vol. 35(9), pages 1970-1975.
    3. Ballestrín, J. & Monterreal, R. & Carra, M.E. & Fernández-Reche, J. & Polo, J. & Enrique, R. & Rodríguez, J. & Casanova, M. & Barbero, F.J. & Alonso-Montesinos, J. & López, G. & Bosch, J.L. & Batlles,, 2018. "Solar extinction measurement system based on digital cameras. Application to solar tower plants," Renewable Energy, Elsevier, vol. 125(C), pages 648-654.
    4. Ballestrín, J. & Carra, E. & Monterreal, R. & Enrique, R. & Polo, J. & Fernández-Reche, J. & Barbero, J. & Marzo, A. & Alonso-Montesinos, J. & López, G. & Batlles, F.J., 2019. "One year of solar extinction measurements at Plataforma Solar de Almería. Application to solar tower plants," Renewable Energy, Elsevier, vol. 136(C), pages 1002-1011.
    5. Collado, Francisco J. & Guallar, Jesús, 2013. "A review of optimized design layouts for solar power tower plants with campo code," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 142-154.
    6. Carra, Elena & Marzo, Aitor & Ballestrín, Jesús & Polo, Jesús & Barbero, Javier & Alonso-Montesinos, Joaquín & Monterreal, Rafael & Abreu, Edgar F.M. & Fernández-Reche, Jesús, 2020. "Atmospheric extinction levels of solar radiation using aerosol optical thickness satellite data. Validation methodology with measurement system," Renewable Energy, Elsevier, vol. 149(C), pages 1120-1132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salmon, Aloïs & Marzo, Aitor & Polo, Jesús & Ballestrín, Jesús & Carra, Elena & Alonso-Montesinos, Joaquín, 2022. "World map of low-layer atmospheric extinction values for solar power tower plants projects," Renewable Energy, Elsevier, vol. 201(P1), pages 876-888.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salmon, Aloïs & Marzo, Aitor & Polo, Jesús & Ballestrín, Jesús & Carra, Elena & Alonso-Montesinos, Joaquín, 2022. "World map of low-layer atmospheric extinction values for solar power tower plants projects," Renewable Energy, Elsevier, vol. 201(P1), pages 876-888.
    2. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    3. Ortega, Guillermo & Rovira, Antonio, 2020. "A new method for the selection of candidates for shading and blocking in central receiver systems," Renewable Energy, Elsevier, vol. 152(C), pages 961-973.
    4. Saghafifar, Mohammad & Gadalla, Mohamed, 2016. "Thermo-economic analysis of air bottoming cycle hybridization using heliostat field collector: A comparative analysis," Energy, Elsevier, vol. 112(C), pages 698-714.
    5. Chao Li & Rongrong Zhai & Yongping Yang, 2017. "Optimization of a Heliostat Field Layout on Annual Basis Using a Hybrid Algorithm Combining Particle Swarm Optimization Algorithm and Genetic Algorithm," Energies, MDPI, vol. 10(11), pages 1-15, November.
    6. Georgios E. Arnaoutakis & Dimitris Al. Katsaprakakis, 2021. "Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration," Energies, MDPI, vol. 14(19), pages 1-25, September.
    7. Ogunmodimu, Olumide & Okoroigwe, Edmund C., 2018. "Concentrating solar power technologies for solar thermal grid electricity in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 104-119.
    8. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    9. Ballestrín, J. & Carra, E. & Alonso-Montesinos, J. & López, G. & Polo, J. & Marzo, A. & Fernández-Reche, J. & Barbero, J. & Batlles, F.J., 2020. "Modeling solar extinction using artificial neural networks. Application to solar tower plants," Energy, Elsevier, vol. 199(C).
    10. Atif, Maimoon. & Al-Sulaiman, Fahad A., 2017. "Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 153-167.
    11. Carra, Elena & Marzo, Aitor & Ballestrín, Jesús & Polo, Jesús & Barbero, Javier & Alonso-Montesinos, Joaquín & Monterreal, Rafael & Abreu, Edgar F.M. & Fernández-Reche, Jesús, 2020. "Atmospheric extinction levels of solar radiation using aerosol optical thickness satellite data. Validation methodology with measurement system," Renewable Energy, Elsevier, vol. 149(C), pages 1120-1132.
    12. Zaharaddeen Ali Hussaini & Peter King & Chris Sansom, 2020. "Numerical Simulation and Design of Multi-Tower Concentrated Solar Power Fields," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
    13. Saghafifar, Mohammad & Gadalla, Mohamed & Mohammadi, Kasra, 2019. "Thermo-economic analysis and optimization of heliostat fields using AINEH code: Analysis of implementation of non-equal heliostats (AINEH)," Renewable Energy, Elsevier, vol. 135(C), pages 920-935.
    14. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    15. Hamed Khodayar Sahebi & Siamak Hoseinzadeh & Hossein Ghadamian & Mohammad Hadi Ghasemi & Farbod Esmaeilion & Davide Astiaso Garcia, 2021. "Techno-Economic Analysis and New Design of a Photovoltaic Power Plant by a Direct Radiation Amplification System," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    16. Wei, Xiudong & Lu, Zhenwu & Yu, Weixing & Zhang, Hongxin & Wang, Zhifeng, 2011. "Tracking and ray tracing equations for the target-aligned heliostat for solar tower power plants," Renewable Energy, Elsevier, vol. 36(10), pages 2687-2693.
    17. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    18. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
    19. Aliana, Arnau & Chang, Miguel & Østergaard, Poul Alberg & Victoria, Marta & Andersen, Anders N., 2022. "Performance assessment of using various solar radiation data in modelling large-scale solar thermal systems integrated in district heating networks," Renewable Energy, Elsevier, vol. 190(C), pages 699-712.
    20. Collado, Francisco J. & Guallar, Jesus, 2019. "Quick design of regular heliostat fields for commercial solar tower power plants," Energy, Elsevier, vol. 178(C), pages 115-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220315061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.