IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v206y2020ics0360544220312913.html
   My bibliography  Save this article

Microalgae-based anaerobic fermentation as a promising technology for producing biogas and microbial oils

Author

Listed:
  • Llamas, Mercedes
  • Magdalena, Jose Antonio
  • Tomás-Pejó, Elia
  • González-Fernández, Cristina

Abstract

This study assessed the potential of using microalgae anaerobic fermentation as a novel choice for producing microbial oils and biogas. Microalgae biomass (Chlorella vulgaris) was used for volatile fatty acids (VFAs) production at three organic loading rates (OLR = 6, 9, 12 g COD/Ld). Regardless of the OLR, anaerobic systems displayed similar organic matter conversion yields into VFAs (VFAs-COD/CODin = 38%) and VFAs distribution profiling. Obtained digestates were further used with a two-fold purpose, producing microbial oils from the VFA rich liquid fraction, and generating methane from the remaining solid spent. The yeast Yarrowia lipolytica was able to grow on VFAs concentration up to 17.6 g/L while the highest VFAs concentration (24.2 g/L, digestate obtained at 12 g COD/Ld) resulted inhibitory. Despite of that, Y. lipolytica exhibited remarkably high lipid content (15–23%) when grown in digestates. The three spent solid fractions (corresponding to the 3 OLRs) reached the same methane potential.

Suggested Citation

  • Llamas, Mercedes & Magdalena, Jose Antonio & Tomás-Pejó, Elia & González-Fernández, Cristina, 2020. "Microalgae-based anaerobic fermentation as a promising technology for producing biogas and microbial oils," Energy, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312913
    DOI: 10.1016/j.energy.2020.118184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220312913
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahdy, Ahmed & Mendez, Lara & Ballesteros, Mercedes & González-Fernández, Cristina, 2014. "Autohydrolysis and alkaline pretreatment effect on Chlorella vulgaris and Scenedesmus sp. methane production," Energy, Elsevier, vol. 78(C), pages 48-52.
    2. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    3. Choi, Oh Kyung & Lee, Kwanhyoung & Park, Ki Young & Kim, Jae-Kon & Lee, Jae Woo, 2017. "Pre-recovery of fatty acid methyl ester (FAME) and anaerobic digestion as a biorefinery route to valorizing waste activated sludge," Renewable Energy, Elsevier, vol. 108(C), pages 548-554.
    4. Fortela, Dhan Lord & Hernandez, Rafael & French, William Todd & Zappi, Mark & Revellame, Emmanuel & Holmes, William & Mondala, Andro, 2016. "Extent of inhibition and utilization of volatile fatty acids as carbon sources for activated sludge microbial consortia dedicated for biodiesel production," Renewable Energy, Elsevier, vol. 96(PA), pages 11-19.
    5. Sun, Chi-He & Fu, Qian & Liao, Qiang & Xia, Ao & Huang, Yun & Zhu, Xun & Reungsang, Alissara & Chang, Hai-Xing, 2019. "Life-cycle assessment of biofuel production from microalgae via various bioenergy conversion systems," Energy, Elsevier, vol. 171(C), pages 1033-1045.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dessì, Federica & Mureddu, Mauro & Ferrara, Francesca & Fermoso, Javier & Orsini, Alessandro & Sanna, Aimaro & Pettinau, Alberto, 2021. "Thermogravimetric characterisation and kinetic analysis of Nannochloropsis sp. and Tetraselmis sp. microalgae for pyrolysis, combustion and oxy-combustion," Energy, Elsevier, vol. 217(C).
    2. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz & Izabela Świca, 2023. "Microalgal Carbon Dioxide (CO 2 ) Capture and Utilization from the European Union Perspective," Energies, MDPI, vol. 16(3), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Sibi G, 2018. "Bioenergy Production from Wastes by Microalgae as Sustainable Approach for Waste Management and to Reduce Resources Depletion," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 13(3), pages 77-80, July.
    3. Oh Kyung Choi & Zachary Hendren & Ki Young Park & Jae-Kon Kim & Jo Yong Park & Ahjeong Son & Jae Woo Lee, 2019. "Characterization and Recovery of In Situ Transesterifiable Lipids (TLs) as Potential Biofuel Feedstock from Sewage Sludge Obtained from Various Sewage Treatment Plants (STPs)," Energies, MDPI, vol. 12(20), pages 1-12, October.
    4. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    5. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    6. Jayne Lois San Juan & Carlo James Caligan & Maria Mikayla Garcia & Jericho Mitra & Andres Philip Mayol & Charlle Sy & Aristotle Ubando & Alvin Culaba, 2020. "Multi-Objective Optimization of an Integrated Algal and Sludge-Based Bioenergy Park and Wastewater Treatment System," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    7. Joseph Christian Utomo & Young Mo Kim & Hyun Uk Cho & Jong Moon Park, 2020. "Evaluation of Scenedesmus rubescens for Lipid Production from Swine Wastewater Blended with Municipal Wastewater," Energies, MDPI, vol. 13(18), pages 1-11, September.
    8. Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun & Wei, Pengfei & Lin, Richen & Murphy, Jerry D., 2018. "Improving production of volatile fatty acids and hydrogen from microalgae and rice residue: Effects of physicochemical characteristics and mix ratios," Applied Energy, Elsevier, vol. 230(C), pages 1082-1092.
    9. Bakonyi, Péter & Buitrón, Germán & Valdez-Vazquez, Idania & Nemestóthy, Nándor & Bélafi-Bakó, Katalin, 2017. "A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation," Applied Energy, Elsevier, vol. 190(C), pages 813-823.
    10. Zhang, Yi & Soldatov, Sergey & Papachristou, Ioannis & Nazarova, Natalja & Link, Guido & Frey, Wolfgang & Silve, Aude, 2022. "Pulsed microwave pretreatment of fresh microalgae for enhanced lipid extraction," Energy, Elsevier, vol. 248(C).
    11. Hu, Yulin & Gong, Mengyue & Feng, Shanghuan & Xu, Chunbao (Charles) & Bassi, Amarjeet, 2019. "A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 476-492.
    12. Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun, 2019. "Life-cycle assessment of biohythane production via two-stage anaerobic fermentation from microalgae and food waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 395-410.
    13. Chen, Hui & Wang, Jie & Zheng, Yanli & Zhan, Jiao & He, Chenliu & Wang, Qiang, 2018. "Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation," Applied Energy, Elsevier, vol. 211(C), pages 296-305.
    14. Awasthi, Mukesh Kumar & Singh, Ekta & Binod, Parameswaran & Sindhu, Raveendran & Sarsaiya, Surendra & Kumar, Aman & Chen, Hongyu & Duan, Yumin & Pandey, Ashok & Kumar, Sunil & Taherzadeh, Mohammad J. , 2022. "Biotechnological strategies for bio-transforming biosolid into resources toward circular bio-economy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    15. Marangon, B.B. & Castro, J.S. & Assemany, P.P. & Couto, E.A. & Calijuri, M.L., 2022. "Environmental performance of microalgae hydrothermal liquefaction: Life cycle assessment and improvement insights for a sustainable renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Salameh, Tareq & Tawalbeh, Muhammad & Al-Shannag, Mohammad & Saidan, Motasem & Melhem, Khalid Bani & Alkasrawi, Malek, 2020. "Energy saving in the process of bioethanol production from renewable paper mill sludge," Energy, Elsevier, vol. 196(C).
    17. Choi, Oh Kyung & Park, Jo Yong & Kim, Jae-Kon & Lee, Jae Woo, 2019. "Bench-scale production of sewage sludge derived-biodiesel (SSD-BD) and upgrade of its quality," Renewable Energy, Elsevier, vol. 141(C), pages 914-921.
    18. Yang, Qiulian & Li, Haitao & Wang, Dong & Zhang, Xiaochun & Guo, Xiangqian & Pu, Shaochen & Guo, Ruixin & Chen, Jianqiu, 2020. "Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture," Applied Energy, Elsevier, vol. 276(C).
    19. Xia, Ao & Sun, Chihe & Fu, Qian & Liao, Qiang & Huang, Yun & Zhu, Xun & Li, Qing, 2020. "Biofuel production from wet microalgae biomass: Comparison of physicochemical properties and extraction performance," Energy, Elsevier, vol. 212(C).
    20. Xiao, Chao & Fu, Qian & Liao, Qiang & Huang, Yun & Xia, Ao & Chen, Hao & Zhu, Xun, 2020. "Life cycle and economic assessments of biogas production from microalgae biomass with hydrothermal pretreatment via anaerobic digestion," Renewable Energy, Elsevier, vol. 151(C), pages 70-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.