IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v201y2020ics0360544220307374.html
   My bibliography  Save this article

Reviews of atmospheric water harvesting technologies

Author

Listed:
  • Tu, Rang
  • Hwang, Yunho

Abstract

Atmospheric water harvesting technologies can be classified based on working principles, namely condensation technology, sorption technology and other technologies. Condensation technology utilizes various refrigeration technologies such as vapor compression cycle, thermoelectric cooling and adsorption/absorption cooling for condensing water vapor. Water harvesting processes can be operated as long as electricity is available. For other technologies, it can be further divided into innovative technologies and hybrid technologies. For innovative technologies, renewable energy powered VCC systems, solar chimney and geothermal cooling systems are used. Based on the above three categories, This paper summarizes these water harvesting technologies from perspectives of system configurations, test setups, simulation methods, performances analysis and important findings. Based on current review study, performances and research gaps of these technologies are compared and evaluated, and possible future research for atmospheric water harvesting in humid or dry climate regions are proposed.

Suggested Citation

  • Tu, Rang & Hwang, Yunho, 2020. "Reviews of atmospheric water harvesting technologies," Energy, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220307374
    DOI: 10.1016/j.energy.2020.117630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220307374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Talaat, M.A. & Awad, M.M. & Zeidan, E.B. & Hamed, A.M., 2018. "Solar-powered portable apparatus for extracting water from air using desiccant solution," Renewable Energy, Elsevier, vol. 119(C), pages 662-674.
    2. Kashiwa, B.A. & Kashiwa, Corey B., 2008. "The solar cyclone: A solar chimney for harvesting atmospheric water," Energy, Elsevier, vol. 33(2), pages 331-339.
    3. Kabeel, A.E., 2007. "Water production from air using multi-shelves solar glass pyramid system," Renewable Energy, Elsevier, vol. 32(1), pages 157-172.
    4. William, G.E. & Mohamed, M.H. & Fatouh, M., 2015. "Desiccant system for water production from humid air using solar energy," Energy, Elsevier, vol. 90(P2), pages 1707-1720.
    5. Wang, J.Y. & Wang, R.Z. & Wang, L.W. & Liu, J.Y., 2017. "A high efficient semi-open system for fresh water production from atmosphere," Energy, Elsevier, vol. 138(C), pages 542-551.
    6. Solís-Chaves, J.S. & Rocha-Osorio, C.M. & Murari, A.L.L. & Lira, Valdemir Martins & Sguarezi Filho, Alfeu J., 2018. "Extracting potable water from humid air plus electric wind generation: A possible application for a Brazilian prototype," Renewable Energy, Elsevier, vol. 121(C), pages 102-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shafeian, Nafise & Ranjbar, A.A. & Gorji, Tahereh B., 2022. "Progress in atmospheric water generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Bahri Korbi, Fadia & Ben-Slimane, Karim & Triki, Dora, 2021. "How do international joint ventures build resilience to navigate institutional crisis? The case of a Tunisian-French IJV during the Arab-Spring," Journal of Business Research, Elsevier, vol. 129(C), pages 157-168.
    3. Kwan, Trevor Hocksun & Shen, Yongting & Hu, Tianxiang & Pei, Gang, 2020. "The fuel cell and atmospheric water generator hybrid system for supplying grid-independent power and freshwater," Applied Energy, Elsevier, vol. 279(C).
    4. Rupam, Tahmid Hasan & Palash, M.L. & Islam, Md Amirul & Saha, Bidyut Baran, 2022. "Transitional metal-doped aluminum fumarates for ultra-low heat driven adsorption cooling systems," Energy, Elsevier, vol. 238(PC).
    5. Pokorny, Nikola & Shemelin, Viacheslav & Novotny, Jiri, 2022. "Experimental study and performance analysis of a mobile autonomous atmospheric water generator designed for arid climatic conditions," Energy, Elsevier, vol. 250(C).
    6. Stephan Peter & Matthias Schirmer & Philippe Lathan & Georg Stimpfl & Bashar Ibrahim, 2022. "Performance Analysis of a Solar-Powered Multi-Purpose Supply Container," Sustainability, MDPI, vol. 14(9), pages 1-13, May.
    7. Tashtoush, Bourhan & Alshoubaki, Anas, 2023. "Atmospheric water harvesting: A review of techniques, performance, renewable energy solutions, and feasibility," Energy, Elsevier, vol. 280(C).
    8. Tamerlan Srymbetov & Albina Jetybayeva & Dinara Dikhanbayeva & Luis Rojas‐Solórzano, 2023. "Mapping non‐conventional atmospheric drinking‐water harvesting opportunities in Central Eurasia: The case of Kazakhstan," Natural Resources Forum, Blackwell Publishing, vol. 47(1), pages 87-113, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salehi, Ali Akbar & Ghannadi-Maragheh, Mohammad & Torab-Mostaedi, Meisam & Torkaman, Rezvan & Asadollahzadeh, Mehdi, 2020. "A review on the water-energy nexus for drinking water production from humid air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    2. Tashtoush, Bourhan & Alshoubaki, Anas, 2023. "Atmospheric water harvesting: A review of techniques, performance, renewable energy solutions, and feasibility," Energy, Elsevier, vol. 280(C).
    3. Shafeian, Nafise & Ranjbar, A.A. & Gorji, Tahereh B., 2022. "Progress in atmospheric water generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Husam S. Al-Duais & Muhammad Azzam Ismail & Zakaria Alcheikh Mahmoud Awad & Karam M. Al-Obaidi, 2022. "Performance Evaluation of Solar-Powered Atmospheric Water Harvesting Using Different Glazing Materials in the Tropical Built Environment: An Experimental Study," Energies, MDPI, vol. 15(9), pages 1-19, April.
    5. Fathy, Mohamed H. & Awad, Mohamed M. & Zeidan, El-Shafei B. & Hamed, Ahmed M., 2020. "Solar powered foldable apparatus for extracting water from atmospheric air," Renewable Energy, Elsevier, vol. 162(C), pages 1462-1489.
    6. Mohammed Sanjid Thavalengal & Muhammad Ahmad Jamil & Muhammad Mehroz & Ben Bin Xu & Haseeb Yaqoob & Muhammad Sultan & Nida Imtiaz & Muhammad Wakil Shahzad, 2023. "Progress and Prospects of Air Water Harvesting System for Remote Areas: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-27, March.
    7. Talaat, M.A. & Awad, M.M. & Zeidan, E.B. & Hamed, A.M., 2018. "Solar-powered portable apparatus for extracting water from air using desiccant solution," Renewable Energy, Elsevier, vol. 119(C), pages 662-674.
    8. Pokorny, Nikola & Shemelin, Viacheslav & Novotny, Jiri, 2022. "Experimental study and performance analysis of a mobile autonomous atmospheric water generator designed for arid climatic conditions," Energy, Elsevier, vol. 250(C).
    9. Ayyagari, Veeresh & Hwang, Yunho & Kim, Jungho, 2021. "Design and development of potassium formate based atmospheric water harvester," Energy, Elsevier, vol. 221(C).
    10. El-Ghonemy, A.M.K., 2012. "Fresh water production from/by atmospheric air for arid regions, using solar energy: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6384-6422.
    11. William, G.E. & Mohamed, M.H. & Fatouh, M., 2015. "Desiccant system for water production from humid air using solar energy," Energy, Elsevier, vol. 90(P2), pages 1707-1720.
    12. Wang, J.Y. & Wang, R.Z. & Wang, L.W. & Liu, J.Y., 2017. "A high efficient semi-open system for fresh water production from atmosphere," Energy, Elsevier, vol. 138(C), pages 542-551.
    13. Zhou, Xinping & Wang, Fang & Ochieng, Reccab M., 2010. "A review of solar chimney power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2315-2338, October.
    14. Uche, J. & Muzás, A. & Acevedo, L.E. & Usón, S. & Martínez, A. & Bayod, A.A., 2020. "Experimental tests to validate the simulation model of a Domestic Trigeneration Scheme with hybrid RESs and Desalting Techniques," Renewable Energy, Elsevier, vol. 155(C), pages 407-419.
    15. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    16. Koonsrisuk, Atit & Chitsomboon, Tawit, 2013. "Effects of flow area changes on the potential of solar chimney power plants," Energy, Elsevier, vol. 51(C), pages 400-406.
    17. Açıkkalp, Emin & Caliskan, Hakan & Hong, Hiki & Piao, Hongjie & Seung, Dohyun, 2022. "Extended exergy analysis of a photovoltaic-thermal (PVT) module based desiccant air cooling system for buildings," Applied Energy, Elsevier, vol. 323(C).
    18. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.
    19. Reif, John H. & Alhalabi, Wadee, 2015. "Solar-thermal powered desalination: Its significant challenges and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 152-165.
    20. Karaca, Ferhat & Raven, Paul Graham & Machell, John & Camci, Fatih, 2015. "A comparative analysis framework for assessing the sustainability of a combined water and energy infrastructure," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 456-468.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220307374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.