IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v200y2020ics0360544220305806.html
   My bibliography  Save this article

On the role of storage for electricity in smart energy systems

Author

Listed:
  • Ajanovic, Amela
  • Hiesl, Albert
  • Haas, Reinhard

Abstract

In recent years the electricity system has started to undergo significant changes. Three major developments are underpinning these changes: (i) the rapid digitalization of the energy system leading to smart grids and increasing flexibility in the system; (ii) the increasing electricity generation from variable renewable energy sources, such as wind and solar; and (iii) the continuing decentralization of electricity generation leading to more and more prosumagers (consumers, which also produce energy and store it) instead of former consumers. Among other necessary changes these developments have led to calls for additional storage capacities. The core objective of this paper is to investigate the possible role of electricity storage in such smart energy systems. We consider all relevant types of storage: short-term ones such as pumped hydro storage, small and large stationary battery and the battery of electric vehicles as well as long-term storage such as hydrogen and methane from power-to-gas conversion technologies and compressed air energy storage. The major conclusions of this analysis are: In recent years the options for placing storage in smart energy systems as well as types of storage have been increasing significantly. However, low number of full-load hours is still the major problem of all electricity storage options.

Suggested Citation

  • Ajanovic, Amela & Hiesl, Albert & Haas, Reinhard, 2020. "On the role of storage for electricity in smart energy systems," Energy, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220305806
    DOI: 10.1016/j.energy.2020.117473
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220305806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haas, Reinhard & Lettner, Georg & Auer, Hans & Duic, Neven, 2013. "The looming revolution: How photovoltaics will change electricity markets in Europe fundamentally," Energy, Elsevier, vol. 57(C), pages 38-43.
    2. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    3. Guille, Christophe & Gross, George, 2009. "A conceptual framework for the vehicle-to-grid (V2G) implementation," Energy Policy, Elsevier, vol. 37(11), pages 4379-4390, November.
    4. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    5. Daniel Akinyele & Juri Belikov & Yoash Levron, 2017. "Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems," Energies, MDPI, vol. 10(11), pages 1-39, November.
    6. Verzijlbergh, R.A. & De Vries, L.J. & Dijkema, G.P.J. & Herder, P.M., 2017. "Institutional challenges caused by the integration of renewable energy sources in the European electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 660-667.
    7. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    8. Michael Child & Alexander Nordling & Christian Breyer, 2018. "The Impacts of High V2G Participation in a 100% Renewable Åland Energy System," Energies, MDPI, vol. 11(9), pages 1-19, August.
    9. Ajanovic, Amela & Haas, Reinhard, 2018. "Economic prospects and policy framework for hydrogen as fuel in the transport sector," Energy Policy, Elsevier, vol. 123(C), pages 280-288.
    10. Römer, Benedikt & Reichhart, Philipp & Kranz, Johann & Picot, Arnold, 2012. "The role of smart metering and decentralized electricity storage for smart grids: The importance of positive externalities," Energy Policy, Elsevier, vol. 50(C), pages 486-495.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Bellocchi, Sara & Manno, Michele & Noussan, Michel & Prina, Matteo Giacomo & Vellini, Michela, 2020. "Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system," Energy, Elsevier, vol. 196(C).
    3. Albert Hiesl & Amela Ajanovic & Reinhard Haas, 2020. "On current and future economics of electricity storage," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1176-1192, December.
    4. Djørup, Søren & Thellufsen, Jakob Zinck & Sorknæs, Peter, 2018. "The electricity market in a renewable energy system," Energy, Elsevier, vol. 162(C), pages 148-157.
    5. Valkering, Pieter & Moglianesi, Andrea & Godon, Louis & Duerinck, Jan & Huber, Dominik & Costa, Daniele, 2023. "Representing decentralized generation and local energy use flexibility in an energy system optimization model," Applied Energy, Elsevier, vol. 348(C).
    6. Amela Ajanovic & Reinhard Haas, 2019. "On the long‐term prospects of power‐to‐gas technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(1), January.
    7. Mubbashir Ali & Jussi Ekström & Matti Lehtonen, 2018. "Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems," Energies, MDPI, vol. 11(5), pages 1-11, May.
    8. Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
    9. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    10. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.
    11. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Changhong Deng & Ning Liang & Jin Tan & Gongchen Wang, 2016. "Multi-Objective Scheduling of Electric Vehicles in Smart Distribution Network," Sustainability, MDPI, vol. 8(12), pages 1-15, November.
    13. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    14. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    15. Schellenberg, C. & Lohan, J. & Dimache, L., 2020. "Comparison of metaheuristic optimisation methods for grid-edge technology that leverages heat pumps and thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Honarmand, Masoud & Zakariazadeh, Alireza & Jadid, Shahram, 2014. "Optimal scheduling of electric vehicles in an intelligent parking lot considering vehicle-to-grid concept and battery condition," Energy, Elsevier, vol. 65(C), pages 572-579.
    17. Bellocchi, Sara & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2018. "Positive interactions between electric vehicles and renewable energy sources in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 161(C), pages 172-182.
    18. Pilpola, Sannamari & Lund, Peter D., 2018. "Effect of major policy disruptions in energy system transition: Case Finland," Energy Policy, Elsevier, vol. 116(C), pages 323-336.
    19. Gyanwali, Khem & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Representing hydropower in the dynamic power sector model and assessing clean energy deployment in the power generation mix of Nepal," Energy, Elsevier, vol. 202(C).
    20. van der Kam, Mart & van Sark, Wilfried, 2015. "Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study," Applied Energy, Elsevier, vol. 152(C), pages 20-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220305806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.