IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v198y2020ics0360544220304825.html
   My bibliography  Save this article

Effect of gas nonlinearity on boilers equipped with vapor-pump (BEVP) system for flue-gas heat and moisture recovery

Author

Listed:
  • Wang, Jingyi
  • Hua, Jing
  • Fu, Lin
  • Zhou, Ding

Abstract

Conventional condensing heat exchangers are considered inefficient in the recovery of surplus heat in flue gas from gas boilers. Different waste heat recovery schemes have emerged for improving the efficiency. The boilers equipped with vapor-pump system (BEVP system) is one of such schemes. This paper focuses on the investigation of gas nonlinearity effect on the overall performance of a BEVP system. It is found that gases are varied-heat-capacity fluids during heat exchange in a BEVP system. Due to gas nonlinearity effect, there is an operation limit for the Subsystem II and thereby the overall system. With the increase of thermal-network return (TNR) water temperature from 45 °C to 65 °C, the maximum system efficiency declines from 92.5% to 74.6%. Also, the maximum TNR water temperature that becomes to cause a significant adverse impact on the operation of the BEVP system appears to be 81.8 °C. To mitigate the gas nonlinearity effect, an optimized configuration is proposed for the BEVP system. Under the optimized configuration, the heat exchange efficiency of the Subsystem II is elevated considerably, namely latent heat exchange efficiency and total heat recovery efficiency both climbing by 14%. In addition, if there were infinite stages inside the Subsystem II, the total heat recovery efficiency would be 100%.

Suggested Citation

  • Wang, Jingyi & Hua, Jing & Fu, Lin & Zhou, Ding, 2020. "Effect of gas nonlinearity on boilers equipped with vapor-pump (BEVP) system for flue-gas heat and moisture recovery," Energy, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:energy:v:198:y:2020:i:c:s0360544220304825
    DOI: 10.1016/j.energy.2020.117375
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220304825
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chaojun & He, Boshu & Yan, Linbo & Pei, Xiaohui & Chen, Shinan, 2014. "Thermodynamic analysis of a low-pressure economizer based waste heat recovery system for a coal-fired power plant," Energy, Elsevier, vol. 65(C), pages 80-90.
    2. Westerlund, Lars & Hermansson, Roger & Fagerström, Jonathan, 2012. "Flue gas purification and heat recovery: A biomass fired boiler supplied with an open absorption system," Applied Energy, Elsevier, vol. 96(C), pages 444-450.
    3. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    4. Wang, Jingyi & Hua, Jing & Fu, Lin & Wang, Zhe & Zhang, Shigang, 2019. "A theoretical fundamental investigation on boilers equipped with vapor-pump system for Flue-Gas Heat and Moisture Recovery," Energy, Elsevier, vol. 171(C), pages 956-970.
    5. Lee, Chang-Eon & Yu, Byeonghun & Lee, Seungro, 2015. "An analysis of the thermodynamic efficiency for exhaust gas recirculation-condensed water recirculation-waste heat recovery condensing boilers (EGR-CWR-WHR CB)," Energy, Elsevier, vol. 86(C), pages 267-275.
    6. Li, Yuzhong & Yan, Min & Zhang, Liqiang & Chen, Guifang & Cui, Lin & Song, Zhanlong & Chang, Jingcai & Ma, Chunyuan, 2016. "Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery," Applied Energy, Elsevier, vol. 172(C), pages 107-117.
    7. Zhao, X.B. & Tang, G.H. & Ma, X.W. & Jin, Y. & Tao, W.Q., 2014. "Numerical investigation of heat transfer and erosion characteristics for H-type finned oval tube with longitudinal vortex generators and dimples," Applied Energy, Elsevier, vol. 127(C), pages 93-104.
    8. Shang, Sheng & Li, Xianting & Chen, Wei & Wang, Baolong & Shi, Wenxing, 2017. "A total heat recovery system between the flue gas and oxidizing air of a gas-fired boiler using a non-contact total heat exchanger," Applied Energy, Elsevier, vol. 207(C), pages 613-623.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Men, Yiyu & Liu, Xiaohua & Zhang, Tao, 2021. "A review of boiler waste heat recovery technologies in the medium-low temperature range," Energy, Elsevier, vol. 237(C).
    2. Wang, Haichao & Wu, Xiaozhou & Liu, Zheyi & Granlund, Katja & Lahdelma, Risto & Li, Ji & Teppo, Esa & Yu, Li & Duamu, Lin & Li, Xiangli & Haavisto, Ilkka, 2021. "Waste heat recovery mechanism for coal-fired flue gas in a counter-flow direct contact scrubber," Energy, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jingyi & Hua, Jing & Fu, Lin & Wang, Zhe & Zhang, Shigang, 2019. "A theoretical fundamental investigation on boilers equipped with vapor-pump system for Flue-Gas Heat and Moisture Recovery," Energy, Elsevier, vol. 171(C), pages 956-970.
    2. Liao, Weicheng & Zhang, Xiaoyue & Li, Zhen, 2022. "Experimental investigation on the performance of a boiler system with flue gas dehumidification and combustion air humidification," Applied Energy, Elsevier, vol. 323(C).
    3. Men, Yiyu & Liu, Xiaohua & Zhang, Tao, 2021. "A review of boiler waste heat recovery technologies in the medium-low temperature range," Energy, Elsevier, vol. 237(C).
    4. Sun, Fangtian & Zhao, Jinzi & Fu, Lin & Sun, Jian & Zhang, Shigang, 2017. "New district heating system based on natural gas-fired boilers with absorption heat exchangers," Energy, Elsevier, vol. 138(C), pages 405-418.
    5. Zhao, Yulong & Wang, Shixue & Ge, Minghui & Li, Yanzhe & Liang, Zhaojun & Yang, Yurong, 2018. "Performance analysis of a thermoelectric generator applied to wet flue gas waste heat recovery," Applied Energy, Elsevier, vol. 228(C), pages 2080-2089.
    6. Shang, Sheng & Li, Xianting & Chen, Wei & Wang, Baolong & Shi, Wenxing, 2017. "A total heat recovery system between the flue gas and oxidizing air of a gas-fired boiler using a non-contact total heat exchanger," Applied Energy, Elsevier, vol. 207(C), pages 613-623.
    7. Ramadan, Mohamad & Khaled, Mahmoud & Haddad, Ahmad & Abdulhay, Bakri & Durrant, Andy & El Hage, Hicham, 2018. "An inhouse code for simulating heat recovery from boilers to heat water," Energy, Elsevier, vol. 157(C), pages 200-210.
    8. Zhang, Qunli & Niu, Yu & Yang, Xiaohu & Sun, Donghan & Xiao, Xin & Shen, Qi & Wang, Gang, 2020. "Experimental study of flue gas condensing heat recovery synergized with low NOx emission system," Applied Energy, Elsevier, vol. 269(C).
    9. Wei, Maolin & Zhao, Xiling & Fu, Lin & Zhang, Shigang, 2017. "Performance study and application of new coal-fired boiler flue gas heat recovery system," Applied Energy, Elsevier, vol. 188(C), pages 121-129.
    10. Cui, Lin & Song, Xiangda & Li, Yuzhong & Wang, Yang & Feng, Yupeng & Yan, Lifan & Dong, Yong, 2018. "Synergistic capture of fine particles in wet flue gas through cooling and condensation," Applied Energy, Elsevier, vol. 225(C), pages 656-667.
    11. Xiao, Pengcheng & Zhang, Yanping & Wang, Yuanjing & Wang, Jizhou, 2019. "Analysis of an improved economizer system for active control of the coal-fired boiler flue gas temperature," Energy, Elsevier, vol. 170(C), pages 185-198.
    12. Li, Yuzhong & Yan, Min & Zhang, Liqiang & Chen, Guifang & Cui, Lin & Song, Zhanlong & Chang, Jingcai & Ma, Chunyuan, 2016. "Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery," Applied Energy, Elsevier, vol. 172(C), pages 107-117.
    13. Wang, Xiang & Zhuo, Jiankun & Liu, Jianmin & Li, Shuiqing, 2020. "Synergetic process of condensing heat exchanger and absorption heat pump for waste heat and water recovery from flue gas," Applied Energy, Elsevier, vol. 261(C).
    14. Chen, Wei & Shi, Wenxing & Li, Xianting & Wang, Baolong & Cao, Yang, 2020. "Application of optimization method based on discretized thermal energy in condensing heat recovery system of combined heat and power plant," Energy, Elsevier, vol. 213(C).
    15. Alka Mihelić-Bogdanić & Ivana Špelić, 2022. "Energy Efficiency Optimization in Polyisoprene Footwear Production," Sustainability, MDPI, vol. 14(17), pages 1-26, August.
    16. Yang, Bo & Yuan, Weixing & Fu, Lin & Zhang, Shigang & Wei, Maolin & Guo, Dongcai, 2020. "Techno-economic study of full-open absorption heat pump applied to flue gas total heat recovery," Energy, Elsevier, vol. 190(C).
    17. Lin, Xiaolong & Li, Qinlun & Wang, Lukai & Guo, Yifan & Liu, Yinhe, 2020. "Thermo-economic analysis of typical thermal systems and corresponding novel system for a 1000 MW single reheat ultra-supercritical thermal power plant," Energy, Elsevier, vol. 201(C).
    18. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    19. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    20. Yang, Jing & Zhang, Zhiyong & Yang, Mingwan & Chen, Jiayu, 2019. "Optimal operation strategy of green supply chain based on waste heat recovery quality," Energy, Elsevier, vol. 183(C), pages 599-605.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:198:y:2020:i:c:s0360544220304825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.