IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v193y2020ics0360544219324673.html
   My bibliography  Save this article

Combination principle of hybrid sources and three typical types of hybrid source heat pumps for year-round efficient operation

Author

Listed:
  • Li, Xianting
  • Lyu, Weihua
  • Ran, Siyuan
  • Wang, Baolong
  • Wu, Wei
  • Yang, Zixu
  • Jiang, Sihang
  • Cui, Mengdi
  • Song, Pengyuan
  • You, Tian
  • Shi, Wenxing

Abstract

Traditional single source heat pump systems, e.g., air source heat pump (ASHP) and ground source heat pump (GSHP), cannot work efficiently in the whole year. To develop an energy-efficient heat pump system for year-round operation, temperature grades of common natural energies are compared with each other. Based on the comparison, the combination principle of hybrid sources with complementary characteristics is discussed firstly. Then three typical types of heat pumps with hybrid sources are selected as representatives to show how to take full advantages of different heat sources or sinks for energy-efficient operation and how to extend functions of hybrid source heat pumps for new solutions to the disadvantages of conventional heat pumps. Finally, the annual performances of these three selected types of hybrid source heat pump systems for three corresponding specific cases are simulated by TRNSYS. The results show that hybrid source heat pump systems can maintain nearly the same heating capacity as they do without frost during the defrosting period; maintain energy-efficient year-round cooling with no risk of freezing during winter; keep the thermal balance of soil and maintain reliable cooling and heating over long periods of operation; fully utilize solar radiation of different intensities; and achieve year-round energy-efficient performance. In contrast to a conventional ASHP and GSHP system, the energy saving rate of a typical hybrid source heat pump system is approximately 15%, and the payback period is approximately five years. Hybrid source heat pumps provide a way to match multiple heat sinks/sources for different levels of building demand in different climates.

Suggested Citation

  • Li, Xianting & Lyu, Weihua & Ran, Siyuan & Wang, Baolong & Wu, Wei & Yang, Zixu & Jiang, Sihang & Cui, Mengdi & Song, Pengyuan & You, Tian & Shi, Wenxing, 2020. "Combination principle of hybrid sources and three typical types of hybrid source heat pumps for year-round efficient operation," Energy, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219324673
    DOI: 10.1016/j.energy.2019.116772
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219324673
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116772?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ozgener, Onder & Ozgener, Leyla, 2015. "Modeling of driveway as a solar collector for improving efficiency of solar assisted geothermal heat pump system: a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 210-217.
    2. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    3. Wu, Wei & Li, Xianting & You, Tian & Wang, Baolong & Shi, Wenxing, 2015. "Combining ground source absorption heat pump with ground source electrical heat pump for thermal balance, higher efficiency and better economy in cold regions," Renewable Energy, Elsevier, vol. 84(C), pages 74-88.
    4. Lee, Joo Seong & Park, Honghee & Kim, Yongchan, 2014. "Transient performance characteristics of a hybrid ground-source heat pump in the cooling mode," Applied Energy, Elsevier, vol. 123(C), pages 121-128.
    5. Zhao, M. & Gu, Z.L. & Kang, W.B. & Liu, X. & Zhang, L.Y. & Jin, L.W. & Zhang, Q.L., 2017. "Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source," Applied Energy, Elsevier, vol. 185(P2), pages 2094-2105.
    6. Ni, Long & Dong, Jiankai & Yao, Yang & Shen, Chao & Qv, Dehu & Zhang, Xuedan, 2015. "A review of heat pump systems for heating and cooling of buildings in China in the last decade," Renewable Energy, Elsevier, vol. 84(C), pages 30-45.
    7. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    8. Zhang, Long & Jiang, Yiqiang & Dong, Jiankai & Yao, Yang, 2018. "Advances in vapor compression air source heat pump system in cold regions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 353-365.
    9. Wu, Wei & Skye, Harrison M. & Domanski, Piotr A., 2018. "Selecting HVAC systems to achieve comfortable and cost-effective residential net-zero energy buildings," Applied Energy, Elsevier, vol. 212(C), pages 577-591.
    10. Zhang, Qunli & Zhang, Lin & Nie, Jinzhe & Li, Yinlong, 2017. "Techno-economic analysis of air source heat pump applied for space heating in northern China," Applied Energy, Elsevier, vol. 207(C), pages 533-542.
    11. Li, Hong & Yang, Hongxing, 2010. "Study on performance of solar assisted air source heat pump systems for hot water production in Hong Kong," Applied Energy, Elsevier, vol. 87(9), pages 2818-2825, September.
    12. Kelly, J. Andrew & Fu, Miao & Clinch, J. Peter, 2016. "Residential home heating: The potential for air source heat pump technologies as an alternative to solid and liquid fuels," Energy Policy, Elsevier, vol. 98(C), pages 431-442.
    13. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Shugang & Gong, Xuemei, 2018. "A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 228(C), pages 1399-1412.
    14. You, Tian & Wu, Wei & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions," Applied Energy, Elsevier, vol. 177(C), pages 515-536.
    15. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    16. Lucia, Umberto & Simonetti, Marco & Chiesa, Giacomo & Grisolia, Giulia, 2017. "Ground-source pump system for heating and cooling: Review and thermodynamic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 867-874.
    17. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Zhihua & Wang, Shugang, 2018. "A model-based design optimization strategy for ground source heat pump systems with integrated photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 214(C), pages 178-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    2. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Jing, Heran, 2022. "Operation mode performance and optimization of a novel coupled air and ground source heat pump system with energy storage: Case study of a hotel building," Renewable Energy, Elsevier, vol. 201(P1), pages 889-903.
    3. Lee, Minwoo & Lee, Dongchan & Park, Myeong Hyeon & Kang, Yong Tae & Kim, Yongchan, 2022. "Performance improvement of solar-assisted ground-source heat pumps with parallelly connected heat sources in heating-dominated areas," Energy, Elsevier, vol. 240(C).
    4. Qianyun Wen & Qiyao Yan & Junjie Qu & Yang Liu, 2021. "Fuzzy Ensemble of Multi-Criteria Decision Making Methods for Heating Energy Transition in Danish Households," Mathematics, MDPI, vol. 9(19), pages 1-22, September.
    5. Han, Binglong & Xiong, Tong & Xu, Shijie & Liu, Guoqiang & Yan, Gang, 2022. "Parametric study of a room air conditioner during defrosting cycle based on a modified defrosting model," Energy, Elsevier, vol. 238(PA).
    6. Sarwo Edhy Sofyan & Eric Hu & Andrei Kotousov & Teuku Meurah Indra Riayatsyah & Razali Thaib, 2020. "Mathematical Modelling and Operational Analysis of Combined Vertical–Horizontal Heat Exchanger for Shallow Geothermal Energy Application in Cooling Mode," Energies, MDPI, vol. 13(24), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. You, Tian & Wu, Wei & Yang, Hongxing & Liu, Jiankun & Li, Xianting, 2021. "Hybrid photovoltaic/thermal and ground source heat pump: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    3. Jia, Teng & Dou, Pengbo & Chu, Peng & Dai, Yanjun, 2020. "Proposal and performance analysis of a novel solar-assisted resorption-subcooled compression hybrid heat pump system for space heating in cold climate condition," Renewable Energy, Elsevier, vol. 150(C), pages 1136-1150.
    4. Naili, Nabiha & Kooli, Sami, 2021. "Solar-assisted ground source heat pump system operated in heating mode: A case study in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Guozhong Zheng & Wentao Bu, 2018. "Review of Heating Methods for Rural Houses in China," Energies, MDPI, vol. 11(12), pages 1-18, December.
    6. Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
    7. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    9. Li, Sihui & Gong, Guangcai & Peng, Jinqing, 2019. "Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone," Applied Energy, Elsevier, vol. 254(C).
    10. Lu, Shixiang & Zhang, Jili & Liang, Ruobing & Zhou, Chao, 2020. "Refrigeration characteristics of a hybrid heat dissipation photovoltaic-thermal heat pump under various ambient conditions on summer night," Renewable Energy, Elsevier, vol. 146(C), pages 2524-2534.
    11. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    12. Liu, Zhijian & Li, Yuanwei & Xu, Wei & Yin, Hang & Gao, Jun & Jin, Guangya & Lun, Liyong & Jin, Guohui, 2019. "Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case," Energy, Elsevier, vol. 173(C), pages 28-37.
    13. Badiei, A. & Golizadeh Akhlaghi, Y. & Zhao, X. & Shittu, S. & Xiao, X. & Li, J. & Fan, Y. & Li, G., 2020. "A chronological review of advances in solar assisted heat pump technology in 21st century," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Jia, Teng & Dai, Enqian & Dai, Yanjun, 2019. "Thermodynamic analysis and optimization of a balanced-type single-stage NH3-H2O absorption-resorption heat pump cycle for residential heating application," Energy, Elsevier, vol. 171(C), pages 120-134.
    15. Nahavandinezhad, Mohammad & Zahedi, Alireza, 2022. "Conceptual design of solar/geothermal hybrid system focusing on technical, economic and environmental parameters," Renewable Energy, Elsevier, vol. 181(C), pages 1110-1125.
    16. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    17. Zhongbao Liu & Fengfei Lou & Xin Qi & Yiyao Shen, 2020. "Enhancing Heating Performance of Low-Temperature Air Source Heat Pumps Using Compressor Casing Thermal Storage," Energies, MDPI, vol. 13(12), pages 1-18, June.
    18. Fan, Yi & Zhao, Xudong & Li, Jing & Cheng, Yuanda & Badiei, Ali & Zhou, Jinzhi & Yu, Min & Li, Guiqiang & Du, Zhenyu & Ji, Jie & Zhu, Zishang & Ma, Xiaoli & Bai, Huifeng & Myers, Steve, 2020. "Operational performance of a novel fast-responsive heat storage/exchanging unit (HSEU) for solar heating systems," Renewable Energy, Elsevier, vol. 151(C), pages 137-151.
    19. Yang, Bowen & Dong, Jiankai & Zhang, Long & Song, Mengjie & Jiang, Yiqiang & Deng, Shiming, 2019. "Heating and energy storage characteristics of multi-split air source heat pump based on energy storage defrosting," Applied Energy, Elsevier, vol. 238(C), pages 303-310.
    20. Lee, Minwoo & Lee, Dongchan & Park, Myeong Hyeon & Kang, Yong Tae & Kim, Yongchan, 2022. "Performance improvement of solar-assisted ground-source heat pumps with parallelly connected heat sources in heating-dominated areas," Energy, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219324673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.