IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v187y2019ics0360544219316081.html
   My bibliography  Save this article

Modeling and characterization of the mass transfer and thermal mechanics of the power lithium manganate battery under charging process

Author

Listed:
  • Chen, Jingwei
  • E, Jiaqiang
  • Kang, Siyi
  • Zhao, Xiaohuan
  • Zhu, Hao
  • Deng, Yuanwang
  • Peng, Qingguo
  • Zhang, Zhiqing

Abstract

Based on the electric charge conservation laws, the mass transfer and the energy conservation, a coupled electrochemical-thermal model of the Lithium battery is established and validated by the experiment data. And then the coupled model is applied to investigate the electrochemical and thermal characteristics of the power Lithium manganate battery at 1C charging ratio and the obtained results include the electrolyte concentration distribution trend, the current density distribution rule, Fick diffusion of the Lithium ions, etc. This results show that the temperature of electrolyte region is significantly higher than that of the regions near to the positive and negative electrode during charging process due to the transfer of Lithium ions in the electrolyte region. Meanwhile, the concentration of active substance particles and the electrolyte concentration can be employed to characterize the polarization size. When charging rates are 0.5C, 1.0 C and 1.5C, the charge times of power Lithium manganate battery are 7200s, 3600s and 2700s, respectively. The maximum and minimum internal temperatures at the end of the charging process are 307.2K/305.8K, 328.2K/323.6K and 341.2K/332.7K, respectively. The appropriate increase of the heat dissipation in the middle of the battery is useful for the reduction of the central temperature inside the battery.

Suggested Citation

  • Chen, Jingwei & E, Jiaqiang & Kang, Siyi & Zhao, Xiaohuan & Zhu, Hao & Deng, Yuanwang & Peng, Qingguo & Zhang, Zhiqing, 2019. "Modeling and characterization of the mass transfer and thermal mechanics of the power lithium manganate battery under charging process," Energy, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316081
    DOI: 10.1016/j.energy.2019.115924
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219316081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.115924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiliang & Karplus, Valerie J. & Qi, Tianyu & Zhang, Da & He, Jiankun, 2016. "Carbon emissions in China: How far can new efforts bend the curve?," Energy Economics, Elsevier, vol. 54(C), pages 388-395.
    2. E, Jiaqiang & Zhao, Xiaohuan & Liu, Guanlin & Zhang, Bin & Zuo, Qingsong & Wei, Kexiang & Li, Hongmei & Han, Dandan & Gong, Jinke, 2019. "Effects analysis on optimal microwave energy consumption in the heating process of composite regeneration for the diesel particulate filter," Applied Energy, Elsevier, vol. 254(C).
    3. de Hoog, Joris & Timmermans, Jean-Marc & Ioan-Stroe, Daniel & Swierczynski, Maciej & Jaguemont, Joris & Goutam, Shovon & Omar, Noshin & Van Mierlo, Joeri & Van Den Bossche, Peter, 2017. "Combined cycling and calendar capacity fade modeling of a Nickel-Manganese-Cobalt Oxide Cell with real-life profile validation," Applied Energy, Elsevier, vol. 200(C), pages 47-61.
    4. E, Jiaqiang & Liu, Teng & Yang, Wenming & Deng, Yuanwang & Gong, Jinke, 2016. "A skeletal mechanism modeling on soot emission characteristics for biodiesel surrogates with varying fatty acid methyl esters proportion," Applied Energy, Elsevier, vol. 181(C), pages 322-331.
    5. Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jiangqiu & He, Xiangming, 2016. "A 3D thermal runaway propagation model for a large format lithium ion battery module," Energy, Elsevier, vol. 115(P1), pages 194-208.
    6. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    7. Kannan, G.R. & Karvembu, R. & Anand, R., 2011. "Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel," Applied Energy, Elsevier, vol. 88(11), pages 3694-3703.
    8. Ou, Xunmin & Xiaoyu, Yan & Zhang, Xiliang, 2011. "Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China," Applied Energy, Elsevier, vol. 88(1), pages 289-297, January.
    9. Xiong, Weiming & Wang, Yu & Mathiesen, Brian Vad & Zhang, Xiliang, 2016. "Case study of the constraints and potential contributions regarding wind curtailment in Northeast China," Energy, Elsevier, vol. 110(C), pages 55-64.
    10. Jiaqiang, E. & Zhao, Xiaohuan & Liu, Haili & Chen, Jianmei & Zuo, Wei & Peng, Qingguo, 2016. "Field synergy analysis for enhancing heat transfer capability of a novel narrow-tube closed oscillating heat pipe," Applied Energy, Elsevier, vol. 175(C), pages 218-228.
    11. Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.
    12. Xu, Meng & Zhang, Zhuqian & Wang, Xia & Jia, Li & Yang, Lixin, 2015. "A pseudo three-dimensional electrochemical–thermal model of a prismatic LiFePO4 battery during discharge process," Energy, Elsevier, vol. 80(C), pages 303-317.
    13. Millo, Federico & Giacominetto, Paolo Ferrero & Bernardi, Marco Gianoglio, 2012. "Analysis of different exhaust gas recirculation architectures for passenger car Diesel engines," Applied Energy, Elsevier, vol. 98(C), pages 79-91.
    14. Zhang, Da & Karplus, Valerie J. & Cassisa, Cyril & Zhang, Xiliang, 2014. "Emissions trading in China: Progress and prospects," Energy Policy, Elsevier, vol. 75(C), pages 9-16.
    15. Lapuerta, Magín & Rodríguez-Fernández, José & Oliva, Fermín, 2012. "Effect of soot accumulation in a diesel particle filter on the combustion process and gaseous emissions," Energy, Elsevier, vol. 47(1), pages 543-552.
    16. De Vita, Armando & Maheshwari, Arpit & Destro, Matteo & Santarelli, Massimo & Carello, Massimiliana, 2017. "Transient thermal analysis of a lithium-ion battery pack comparing different cooling solutions for automotive applications," Applied Energy, Elsevier, vol. 206(C), pages 101-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Xianrong & Duan, Xiting & Jiang, Wenjuan & Wang, Yan & Zou, Youlan & Lei, Weixin & Sun, Lizhong & Ma, Zengsheng, 2021. "Structural design of a composite board/heat pipe based on the coupled electro-chemical-thermal model in battery thermal management system," Energy, Elsevier, vol. 216(C).
    2. Li, Haowen & Yang, Huachao & Xu, Chenxuan & Yan, Jianhua & Cen, Kefa & Ostrikov, Kostya (Ken) & Bo, Zheng, 2022. "Entropy generation analysis in supercapacitor modules based on a three-dimensional coupled thermal model," Energy, Elsevier, vol. 244(PB).
    3. Solai, Elie & Guadagnini, Maxime & Beaugendre, Héloïse & Daccord, Rémi & Congedo, Pietro, 2022. "Validation of a data-driven fast numerical model to simulate the immersion cooling of a lithium-ion battery pack," Energy, Elsevier, vol. 249(C).
    4. Mostafa Esmaeili Shayan & Gholamhassan Najafi & Barat Ghobadian & Shiva Gorjian & Mohamed Mazlan & Mehdi Samami & Alireza Shabanzadeh, 2022. "Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    5. Zhang, Zhiqing & Hu, Jingyi & Tan, Dongli & Li, Junming & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Ye, Yanshuai & Zhao, Ziheng & Yang, Guanhua, 2023. "Multi-objective optimization of the three-way catalytic converter on the combustion and emission characteristics for a gasoline engine," Energy, Elsevier, vol. 277(C).
    6. Morali, Ugur, 2022. "A numerical and statistical implementation of a thermal model for a lithium-ion battery," Energy, Elsevier, vol. 240(C).
    7. Gao, Yizhao & Zhu, Chong & Zhang, Xi & Guo, Bangjun, 2021. "Implementation and evaluation of a practical electrochemical- thermal model of lithium-ion batteries for EV battery management system," Energy, Elsevier, vol. 221(C).
    8. Zha, Yunfei & He, Shunquan & Meng, Xianfeng & Zuo, Hongyan & Zhao, Xiaohuan, 2023. "Heat dissipation performance research between drop contact and immersion contact of lithium-ion battery cooling," Energy, Elsevier, vol. 279(C).
    9. Girade, Piyush & Shah, Harsh & Kaushik, Karan & Patheria, Akil & Xu, Bin, 2021. "Comparative analysis of state of charge based adaptive supervisory control strategies of plug-in Hybrid Electric Vehicles," Energy, Elsevier, vol. 230(C).
    10. Zuo, Hongyan & Zhang, Bin & Huang, Zhonghua & Wei, Kexiang & Zhu, Hong & Tan, Jiqiu, 2022. "Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation," Energy, Elsevier, vol. 238(PB).
    11. Yang, Yue & Chen, Lei & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2020. "Capacity fade characteristics of lithium iron phosphate cell during dynamic cycle," Energy, Elsevier, vol. 206(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Yuanwang & Ying, Hejie & E, Jiaqiang & Zhu, Hao & Wei, Kexiang & Chen, Jingwei & Zhang, Feng & Liao, Gaoliang, 2019. "Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries," Energy, Elsevier, vol. 176(C), pages 91-102.
    2. Zuo, Hongyan & Zhang, Bin & Huang, Zhonghua & Wei, Kexiang & Zhu, Hong & Tan, Jiqiu, 2022. "Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation," Energy, Elsevier, vol. 238(PB).
    3. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    4. Zhang, Zhiqing & Lv, Junshuai & Xie, Guanglin & Wang, Su & Ye, Yanshuai & Huang, Gaohua & Tan, Donlgi, 2022. "Effect of assisted hydrogen on combustion and emission characteristics of a diesel engine fueled with biodiesel," Energy, Elsevier, vol. 254(PA).
    5. Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).
    6. E, Jiaqiang & Zeng, Yan & Jin, Yu & Zhang, Bin & Huang, Zhonghua & Wei, Kexiang & Chen, Jingwei & Zhu, Hao & Deng, Yuanwang, 2020. "Heat dissipation investigation of the power lithium-ion battery module based on orthogonal experiment design and fuzzy grey relation analysis," Energy, Elsevier, vol. 211(C).
    7. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    8. Zhang, Zhiqing & Li, Jiangtao & Tian, Jie & Dong, Rui & Zou, Zhi & Gao, Sheng & Tan, Dongli, 2022. "Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends," Energy, Elsevier, vol. 249(C).
    9. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    10. Zhang, Liwen & Zhao, Peng & Xu, Meng & Wang, Xia, 2020. "Computational identification of the safety regime of Li-ion battery thermal runaway," Applied Energy, Elsevier, vol. 261(C).
    11. Xinyu Liu & Zhifu Zhou & Weitao Wu & Linsong Gao & Yang Li & Heng Huang & Zheng Huang & Yubai Li & Yongchen Song, 2022. "Three-Dimensional Modeling for the Internal Shorting Caused Thermal Runaway Process in 20Ah Lithium-Ion Battery," Energies, MDPI, vol. 15(19), pages 1-25, September.
    12. Ardani, M.I. & Patel, Y. & Siddiq, A. & Offer, G.J. & Martinez-Botas, R.F., 2018. "Combined experimental and numerical evaluation of the differences between convective and conductive thermal control on the performance of a lithium ion cell," Energy, Elsevier, vol. 144(C), pages 81-97.
    13. Zhu, Xinning & Zuo, Qingsong & Tang, Yuanyou & Xie, Yong & Shen, Zhuang & Yang, Xiaomei, 2022. "Performance enhancement of equilibrium regeneration in a gasoline particulate filter based on field synergy theory," Energy, Elsevier, vol. 244(PA).
    14. Hu, Wenyu & E, Jiaqiang & Leng, Erwei & Zhang, Feng & Chen, Jingwei & Ma, Yinjie, 2023. "Investigation on harvesting characteristics of convective wind energy from vehicle driving on multi-lane highway," Energy, Elsevier, vol. 263(PE).
    15. Zhang, Jiawei & Liu, Miaomiao & Bi, Jun, 2022. "Urban greenhouse gas emission peaking paths and embedded health co-benefits: A multicases comparison study in China," Applied Energy, Elsevier, vol. 311(C).
    16. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & M. F. M. A. Zamri, 2021. "State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles," Energies, MDPI, vol. 14(6), pages 1-24, March.
    17. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Fuquan Zhao & Feiqi Liu & Han Hao & Zongwei Liu, 2020. "Carbon Emission Reduction Strategy for Energy Users in China," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    19. Tan, Dongli & Meng, Yujun & Tian, Jie & Zhang, Chengtao & Zhang, Zhiqing & Yang, Guanhua & Cui, Shuwan & Hu, Jingyi & Zhao, Ziheng, 2023. "Utilization of renewable and sustainable diesel/methanol/n-butanol (DMB) blends for reducing the engine emissions in a diesel engine with different pre-injection strategies," Energy, Elsevier, vol. 269(C).
    20. Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.