IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v183y2019icp1040-1048.html
   My bibliography  Save this article

Co-processing behavior of Gölbaşı lignite and poplar sawdust by factorial experimental design method

Author

Listed:
  • Karaca, Hüseyin.
  • Koyunoğlu, Cemil
  • Özdemir, Ali
  • Ergun, Kenan

Abstract

In this work, the liquefaction of coal and biomass with direct liquefaction strategy was explored. The point of liquefaction is both to utilize a greater amount of the current coal and biomass assets all the more productively and to create an alternative liquid fuel to oil. Along these lines, the procedure parameters must be resolved to expand the liquefaction efficiency. In addition, it is proposed to do the liquefaction efficiency, particularly in the reactant conditions, to expand the measure of oil. Process parameters were controlled by utilizing Factorial Experimental Design technique in the liquefaction procedures. The solid/liquid ratio was changed as 1/2-1/4, the catalyst concentration was 2–6%, the temperature was 375–400 °C and the duration was 30–90 min. Starting nitrogen pressure was set at 30 bar, stirring speed was 400 rpm, coal/biomass proportion was settled at 1/1. Tetralin as a solvent and MoO3 as catalyst were utilized. Toward the finish of the liquefaction procedure, the total conversions were computed in view of the acquired non-reactive solid (char). As indicated by the outcomes obtained, the most total conversion (81.9%) was acquired at a solid/liquid proportion of 1/2, a catalyst concentration of 2%, a reaction time of 90 min and a reaction temperature of 400 °C. In light of total conversions and elective liquid fuel (oil) in the given conditions, the solid/liquid ratio should be taken as 1/2, the catalyst concentration is 2%, the reaction time is 30–90 min and the reaction temperature is 400 °C. The lowest reaction time found, in this study, is the innovative solution for reducing co-liquefaction cost preferred.

Suggested Citation

  • Karaca, Hüseyin. & Koyunoğlu, Cemil & Özdemir, Ali & Ergun, Kenan, 2019. "Co-processing behavior of Gölbaşı lignite and poplar sawdust by factorial experimental design method," Energy, Elsevier, vol. 183(C), pages 1040-1048.
  • Handle: RePEc:eee:energy:v:183:y:2019:i:c:p:1040-1048
    DOI: 10.1016/j.energy.2019.06.157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219312897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hardi, Flabianus & Mäkelä, Mikko & Yoshikawa, Kunio, 2017. "Non-catalytic hydrothermal liquefaction of pine sawdust using experimental design: Material balances and products analysis," Applied Energy, Elsevier, vol. 204(C), pages 1026-1034.
    2. Mohajerani, Sara & Kumar, Amit & Oni, Abayomi Olufemi, 2018. "A techno-economic assessment of gas-to-liquid and coal-to-liquid plants through the development of scale factors," Energy, Elsevier, vol. 150(C), pages 681-693.
    3. Nazari, Laleh & Yuan, Zhongshun & Ray, Madhumita B. & Xu, Chunbao (Charles), 2017. "Co-conversion of waste activated sludge and sawdust through hydrothermal liquefaction: Optimization of reaction parameters using response surface methodology," Applied Energy, Elsevier, vol. 203(C), pages 1-10.
    4. Smith, Ian W., 1986. "The conversion of brown coal to oil by flash pyrolysis," Energy, Elsevier, vol. 11(11), pages 1217-1224.
    5. Dai, Hewu, 1986. "Status of direct coal liquefaction research in China," Energy, Elsevier, vol. 11(11), pages 1225-1229.
    6. Gan, Jing & Yuan, Wenqiao, 2013. "Operating condition optimization of corncob hydrothermal conversion for bio-oil production," Applied Energy, Elsevier, vol. 103(C), pages 350-357.
    7. Alhassan, Y. & Pali, H.S. & Kumar, N. & Bugaje, I.M., 2017. "Co-liquefaction of whole Jatropha curcas seed and glycerol using deep eutectic solvents as catalysts," Energy, Elsevier, vol. 138(C), pages 48-59.
    8. Penner, S.S. & Alpert, S.B. & Bendanillo, V. & Clardy, J. & Furlong, L.E. & Leder, F. & Lees, L. & Reichl, E. & Ross, J. & Sieg, R.P. & Squires, A.M. & Thomas, J., 1980. "Research needs for coal gasification and coal liquefaction," Energy, Elsevier, vol. 5(11), pages 1091-1116.
    9. Depci, Tolga & Karta, Mesut & Karaca, Huseyin, 2018. "Co-liquefaction process olive bagasse and peat with lignite and the effect of biomasses on the products and oil yield," Energy, Elsevier, vol. 156(C), pages 750-757.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
    2. Yang, Jie & He, Quan (Sophia) & Niu, Haibo & Corscadden, Kenneth & Astatkie, Tess, 2018. "Hydrothermal liquefaction of biomass model components for product yield prediction and reaction pathways exploration," Applied Energy, Elsevier, vol. 228(C), pages 1618-1628.
    3. Yang, Jie & He, Quan (Sophia) & Corscadden, Kenneth & Niu, Haibo & Lin, Jianan & Astatkie, Tess, 2019. "Advanced models for the prediction of product yield in hydrothermal liquefaction via a mixture design of biomass model components coupled with process variables," Applied Energy, Elsevier, vol. 233, pages 906-915.
    4. Hosseini, Mohammad & Hatefirad, Parvaneh & Salimi, Saeideh & Tavasoli, Ahmad, 2022. "Hydrothermal liquefaction of granular bacteria to high-quality bio-oil using Ni–Ce catalysts supported on functionalized activated carbon," Energy, Elsevier, vol. 241(C).
    5. Gagarin, H. & Sridhar, S. & Lange, I. & Bazilian, M.D., 2020. "Considering non-power generation uses of coal in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    6. Tiantian Yang & Tie Wang & Guoxing Li & Jinhong Shi & Xiuquan Sun, 2018. "Vibration Characteristics of Compression Ignition Engines Fueled with Blended Petro-Diesel and Fischer-Tropsch Diesel Fuel from Coal Fuels," Energies, MDPI, vol. 11(8), pages 1-15, August.
    7. Prajitno, Hermawan & Park, Jongkeun & Ryu, Changkook & Park, Ho Young & Lim, Hyun Soo & Kim, Jaehoon, 2018. "Effects of solvent participation and controlled product separation on biomass liquefaction: A case study of sewage sludge," Applied Energy, Elsevier, vol. 218(C), pages 402-416.
    8. Ratha, Sachitra Kumar & Renuka, Nirmal & Abunama, Taher & Rawat, Ismail & Bux, Faizal, 2022. "Hydrothermal liquefaction of algal feedstocks: The effect of biomass characteristics and extraction solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Zhang, Bo & Chen, Jixiang & Kandasamy, Sabariswaran & He, Zhixia, 2020. "Hydrothermal liquefaction of fresh lemon-peel and Spirulina platensis blending -operation parameter and biocrude chemistry investigation," Energy, Elsevier, vol. 193(C).
    10. Yang Han & Kent Hoekman & Umakanta Jena & Probir Das, 2019. "Use of Co-Solvents in Hydrothermal Liquefaction (HTL) of Microalgae," Energies, MDPI, vol. 13(1), pages 1-23, December.
    11. Liu, Xiang & Chen, Meiqian & Wei, Yuanhang, 2015. "Combustion behavior of corncob/bituminous coal and hardwood/bituminous coal," Renewable Energy, Elsevier, vol. 81(C), pages 355-365.
    12. Qian, Lili & Wang, Shuzhong & Savage, Phillip E., 2020. "Fast and isothermal hydrothermal liquefaction of sludge at different severities: Reaction products, pathways, and kinetics," Applied Energy, Elsevier, vol. 260(C).
    13. SundarRajan, P. & Gopinath, K.P. & Arun, J. & GracePavithra, K. & Adithya Joseph, A. & Manasa, S., 2021. "Insights into valuing the aqueous phase derived from hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Pauletto, Gianluca & Galli, Federico & Gaillardet, Alice & Mocellin, Paolo & Patience, Gregory S., 2021. "Techno economic analysis of a micro Gas-to-Liquid unit for associated natural gas conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Prestigiacomo, Claudia & Laudicina, Vito Armando & Siragusa, Angelo & Scialdone, Onofrio & Galia, Alessandro, 2020. "Hydrothermal liquefaction of waste biomass in stirred reactors: One step forward to the integral valorization of municipal sludge," Energy, Elsevier, vol. 201(C).
    16. Sulaiman, Nur Fatin & Wan Abu Bakar, Wan Azelee & Toemen, Susilawati & Kamal, Norhasyimah Mohd & Nadarajan, Renugambaal, 2019. "In depth investigation of bi-functional, Cu/Zn/γ-Al2O3 catalyst in biodiesel production from low-grade cooking oil: Optimization using response surface methodology," Renewable Energy, Elsevier, vol. 135(C), pages 408-416.
    17. Rahimipetroudi, Iman & Rashid, Kashif & Yang, Je Bok & Dong, Sang Keun, 2021. "Development of environment-friendly dual fuel pulverized coal-natural gas combustion technology for the co-firing power plant boiler: Experimental and numerical analysis," Energy, Elsevier, vol. 228(C).
    18. Deng, Shengxiang & Zhou, Jiemin, 2011. "An experimental study of the effect of water content on combustion of coal tar/water emulsion droplets," Energy, Elsevier, vol. 36(10), pages 6130-6137.
    19. Huang, Hua-jun & Chang, Yan-chao & Lai, Fa-ying & Zhou, Chun-fei & Pan, Zi-qian & Xiao, Xiao-feng & Wang, Jia-xin & Zhou, Chun-huo, 2019. "Co-liquefaction of sewage sludge and rice straw/wood sawdust: The effect of process parameters on the yields/properties of bio-oil and biochar products," Energy, Elsevier, vol. 173(C), pages 140-150.
    20. Alherbawi, Mohammad & AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2021. "Optimum sustainable utilisation of the whole fruit of Jatropha curcas: An energy, water and food nexus approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:183:y:2019:i:c:p:1040-1048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.