IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v144y2021ics1364032121003099.html
   My bibliography  Save this article

Insights into valuing the aqueous phase derived from hydrothermal liquefaction

Author

Listed:
  • SundarRajan, P.
  • Gopinath, K.P.
  • Arun, J.
  • GracePavithra, K.
  • Adithya Joseph, A.
  • Manasa, S.

Abstract

Hydrothermal liquefaction (HTL) process is a wet-thermochemical conversion technology that was used to convert biomass into bio-crude oil. Commercialization of the HTL technology faces drawbacks due to product stability, by-products generation and working area. In order to overcome these challenges, this review especially focuses on possible pathways to valorise and recover nutrients from post-hydrothermal liquefaction wastewater (PHWW) that was obtained during the HTL process. Numerous studies were reported on bio-oil production from biomasses like algae, forest and agriculture residues, etc at a temperature range of 240–320 °C at time of 30–60 min. Apart from bio-oil, nearly 25 to 50 wt% of aqueous phase was generated, disposal of this aqueous phase is hectic since it comprised of low molecular weight acid compounds. In this study, the composition of PHWW and possible routes (biological and thermochemical pathways) to valorise it were discussed in detail. In addition, recycle and reutilization of PHWW were reviewed with recent findings. From the review, the use of anaerobic digestion as a detoxify step prior to microalgae cultivation resulted in decreasing the fresh water dilution from 20 × to 4 × and improved the energy output from 3.44 to 20.7 kJ g⁻1 COD. This review will provide new insights towards closed circular approach opportunities in thermochemical pathways during sustainable energy production.

Suggested Citation

  • SundarRajan, P. & Gopinath, K.P. & Arun, J. & GracePavithra, K. & Adithya Joseph, A. & Manasa, S., 2021. "Insights into valuing the aqueous phase derived from hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121003099
    DOI: 10.1016/j.rser.2021.111019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121003099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wan-Ting & Zhang, Yuanhui & Zhang, Jixiang & Schideman, Lance & Yu, Guo & Zhang, Peng & Minarick, Mitchell, 2014. "Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil," Applied Energy, Elsevier, vol. 128(C), pages 209-216.
    2. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    3. Déniel, Maxime & Haarlemmer, Geert & Roubaud, Anne & Weiss-Hortala, Elsa & Fages, Jacques, 2016. "Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1632-1652.
    4. Hu, Yulin & Gong, Mengyue & Feng, Shanghuan & Xu, Chunbao (Charles) & Bassi, Amarjeet, 2019. "A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 476-492.
    5. Cheng, Feng & Cui, Zheng & Chen, Lin & Jarvis, Jacqueline & Paz, Neil & Schaub, Tanner & Nirmalakhandan, Nagamany & Brewer, Catherine E., 2017. "Hydrothermal liquefaction of high- and low-lipid algae: Bio-crude oil chemistry," Applied Energy, Elsevier, vol. 206(C), pages 278-292.
    6. Collett, James R. & Billing, Justin M. & Meyer, Pimphan A. & Schmidt, Andrew J. & Remington, A. Brook & Hawley, Erik R. & Hofstad, Beth A. & Panisko, Ellen A. & Dai, Ziyu & Hart, Todd R. & Santosa, Da, 2019. "Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover," Applied Energy, Elsevier, vol. 233, pages 840-853.
    7. Pedersen, T.H. & Grigoras, I.F. & Hoffmann, J. & Toor, S.S. & Daraban, I.M. & Jensen, C.U. & Iversen, S.B. & Madsen, R.B. & Glasius, M. & Arturi, K.R. & Nielsen, R.P. & Søgaard, E.G. & Rosendahl, L.A., 2016. "Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation," Applied Energy, Elsevier, vol. 162(C), pages 1034-1041.
    8. Hardi, Flabianus & Mäkelä, Mikko & Yoshikawa, Kunio, 2017. "Non-catalytic hydrothermal liquefaction of pine sawdust using experimental design: Material balances and products analysis," Applied Energy, Elsevier, vol. 204(C), pages 1026-1034.
    9. Daniele Castello & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2018. "Continuous Hydrothermal Liquefaction of Biomass: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-35, November.
    10. Zhu, Zhe & Rosendahl, Lasse & Toor, Saqib Sohail & Yu, Donghong & Chen, Guanyi, 2015. "Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation," Applied Energy, Elsevier, vol. 137(C), pages 183-192.
    11. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    12. Reddy, Harvind Kumar & Muppaneni, Tapaswy & Ponnusamy, Sundaravadivelnathan & Sudasinghe, Nilusha & Pegallapati, Ambica & Selvaratnam, Thinesh & Seger, Mark & Dungan, Barry & Nirmalakhandan, Nagamany , 2016. "Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp," Applied Energy, Elsevier, vol. 165(C), pages 943-951.
    13. Duan, Pei-Gao & Yang, Shi-Kun & Xu, Yu-Ping & Wang, Feng & Zhao, Dan & Weng, Yu-Jing & Shi, Xian-Lei, 2018. "Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass," Energy, Elsevier, vol. 155(C), pages 734-745.
    14. Shen, Ruixia & Jiang, Yong & Ge, Zheng & Lu, Jianwen & Zhang, Yuanhui & Liu, Zhidan & Ren, Zhiyong Jason, 2018. "Microbial electrolysis treatment of post-hydrothermal liquefaction wastewater with hydrogen generation," Applied Energy, Elsevier, vol. 212(C), pages 509-515.
    15. D. Ryan Georgianna & Stephen P. Mayfield, 2012. "Exploiting diversity and synthetic biology for the production of algal biofuels," Nature, Nature, vol. 488(7411), pages 329-335, August.
    16. Chen, Haitao & He, Zhixia & Zhang, Bo & Feng, Huan & Kandasamy, Sabariswaran & Wang, Bin, 2019. "Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of Spirulina Platensis, α-cellulose, and lignin," Energy, Elsevier, vol. 179(C), pages 1103-1113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zoppi, Giulia & Tito, Edoardo & Bianco, Isabella & Pipitone, Giuseppe & Pirone, Raffaele & Bensaid, Samir, 2023. "Life cycle assessment of the biofuel production from lignocellulosic biomass in a hydrothermal liquefaction – aqueous phase reforming integrated biorefinery," Renewable Energy, Elsevier, vol. 206(C), pages 375-385.
    2. Osman, Ahmed I. & Qasim, Umair & Jamil, Farrukh & Al-Muhtaseb, Ala'a H. & Jrai, Ahmad Abu & Al-Riyami, Mohammed & Al-Maawali, Suhaib & Al-Haj, Lamya & Al-Hinai, Amer & Al-Abri, Mohammed & Inayat, Abra, 2021. "Bioethanol and biodiesel: Bibliometric mapping, policies and future needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
    2. Chen, Xinfei & Ma, Xiaoqian & Zeng, Xianghao & Zheng, Chupeng & Lu, Xiaoluan, 2020. "Ethanol addition during aqueous phase recirculation for further improving bio-oil yield and quality," Applied Energy, Elsevier, vol. 262(C).
    3. Li, Bingshuo & Liu, Yixuan & Yang, Tianhua & Feng, Bixuan & Kai, Xingping & Wang, Shurong & Li, Rundong, 2021. "Aqueous phase reforming of biocrude derived from lignocellulose hydrothermal liquefaction: Conditions optimization and mechanism study," Renewable Energy, Elsevier, vol. 175(C), pages 98-107.
    4. Kamaldeep Sharma & Ayaz A. Shah & Saqib S. Toor & Tahir H. Seehar & Thomas H. Pedersen & Lasse A. Rosendahl, 2021. "Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water," Energies, MDPI, vol. 14(6), pages 1-13, March.
    5. Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
    6. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    7. Prajitno, Hermawan & Park, Jongkeun & Ryu, Changkook & Park, Ho Young & Lim, Hyun Soo & Kim, Jaehoon, 2018. "Effects of solvent participation and controlled product separation on biomass liquefaction: A case study of sewage sludge," Applied Energy, Elsevier, vol. 218(C), pages 402-416.
    8. Nikolaos Montesantos & Marco Maschietti, 2020. "Supercritical Carbon Dioxide Extraction of Lignocellulosic Bio-Oils: The Potential of Fuel Upgrading and Chemical Recovery," Energies, MDPI, vol. 13(7), pages 1-35, April.
    9. Ratha, Sachitra Kumar & Renuka, Nirmal & Abunama, Taher & Rawat, Ismail & Bux, Faizal, 2022. "Hydrothermal liquefaction of algal feedstocks: The effect of biomass characteristics and extraction solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Siyuan Yin & Nianze Zhang & Chunyan Tian & Weiming Yi & Qiaoxia Yuan & Peng Fu & Yuchun Zhang & Zhiyu Li, 2021. "Effect of Accumulative Recycling of Aqueous Phase on the Properties of Hydrothermal Degradation of Dry Biomass and Bio-Crude Oil Formation," Energies, MDPI, vol. 14(2), pages 1-19, January.
    11. Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
    12. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    13. Ayaz Ali Shah & Saqib Sohail Toor & Asbjørn Haaning Nielsen & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2021. "Bio-Crude Production through Recycling of Pretreated Aqueous Phase via Activated Carbon," Energies, MDPI, vol. 14(12), pages 1-20, June.
    14. Dylan J. Cronin & Senthil Subramaniam & Casper Brady & Alan Cooper & Zhibin Yang & Joshua Heyne & Corinne Drennan & Karthikeyan K. Ramasamy & Michael R. Thorson, 2022. "Sustainable Aviation Fuel from Hydrothermal Liquefaction of Wet Wastes," Energies, MDPI, vol. 15(4), pages 1-17, February.
    15. Bi, Zheting & Zhang, Ji & Zhu, Zeying & Liang, Yanna & Wiltowski, Tomasz, 2018. "Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction," Applied Energy, Elsevier, vol. 209(C), pages 435-444.
    16. Yuan, Chuan & Wang, Shuang & Cao, Bin & Hu, Yamin & Abomohra, Abd El-Fatah & Wang, Qian & Qian, Lili & Liu, Lu & Liu, Xinlin & He, Zhixia & Sun, Chaoqun & Feng, Yongqiang & Zhang, Bo, 2019. "Optimization of hydrothermal co-liquefaction of seaweeds with lignocellulosic biomass: Merging 2nd and 3rd generation feedstocks for enhanced bio-oil production," Energy, Elsevier, vol. 173(C), pages 413-422.
    17. Wang, Haoyu & Han, Xue & Zeng, Yimin & Xu, Chunbao Charles, 2023. "Development of a global kinetic model based on chemical compositions of lignocellulosic biomass for predicting product yields from hydrothermal liquefaction," Renewable Energy, Elsevier, vol. 215(C).
    18. Gundupalli, Marttin Paulraj & Bhattacharyya, Debraj, 2021. "Hydrothermal liquefaction of residues of Cocos nucifera (coir and pith) using subcritical water: Process optimization and product characterization," Energy, Elsevier, vol. 236(C).
    19. Kandasamy, Sabariswaran & Zhang, Bo & He, Zhixia & Chen, Haitao & Feng, Huan & Wang, Qian & Wang, Bin & Ashokkumar, Veeramuthu & Siva, Subramanian & Bhuvanendran, Narayanamoorthy & Krishnamoorthi, M., 2020. "Effect of low-temperature catalytic hydrothermal liquefaction of Spirulina platensis," Energy, Elsevier, vol. 190(C).
    20. Ayaz A. Shah & Saqib S. Toor & Tahir H. Seehar & Rasmus S. Nielsen & Asbjørn H. Nielsen & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Bio-Crude Production through Aqueous Phase Recycling of Hydrothermal Liquefaction of Sewage Sludge," Energies, MDPI, vol. 13(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121003099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.