IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v175y2019icp677-686.html
   My bibliography  Save this article

Conventional photovoltaic panel for nocturnal radiative cooling and preliminary performance analysis

Author

Listed:
  • Zhao, Bin
  • Hu, Mingke
  • Ao, Xianze
  • Huang, Xiaona
  • Ren, Xiao
  • Pei, Gang

Abstract

A novel concept of energy harvesting method (PV-RC) based on the conventional photovoltaic (PV) panel, combining diurnal PV conversion and nocturnal radiative cooling (RC) method, was developed to generate electricity and obtain cooling energy. A PV-RC hybrid system was also designed, manufactured, and spectral characterized, which exhibit high solar absorption in PV conversion band (0.3–1.1 μm) and has strong thermal emission within thermal radiation band (4–25 μm). Experimental studies of the hybrid system were carried out in Hefei (117° E, 32° N), China. The measured results demonstrate that the hybrid system has an average electricity output of 75.7 W m−2 with an average electrical efficiency of 12.4% for diurnal PV conversion and exhibits an equilibrium temperature reduction of 12.7 °C below ambient temperature for nocturnal RC process. Parametric studies were also conducted by a validated simulation model, which discuss the effects of different meteorological parameters on the performance of the system. The simulated results imply that dry regions are more suitable for nocturnal RC mechanism.

Suggested Citation

  • Zhao, Bin & Hu, Mingke & Ao, Xianze & Huang, Xiaona & Ren, Xiao & Pei, Gang, 2019. "Conventional photovoltaic panel for nocturnal radiative cooling and preliminary performance analysis," Energy, Elsevier, vol. 175(C), pages 677-686.
  • Handle: RePEc:eee:energy:v:175:y:2019:i:c:p:677-686
    DOI: 10.1016/j.energy.2019.03.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219305109
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.03.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Chao & Ji, Jie & Sun, Wei & Ma, Jinwei & He, Wei & Wang, Yanqiu, 2015. "Numerical simulation and experimental validation of tri-functional photovoltaic/thermal solar collector," Energy, Elsevier, vol. 87(C), pages 470-480.
    2. Boixo, Sergio & Diaz-Vicente, Marian & Colmenar, Antonio & Castro, Manuel Alonso, 2012. "Potential energy savings from cool roofs in Spain and Andalusia," Energy, Elsevier, vol. 38(1), pages 425-438.
    3. Vall, Sergi & Castell, Albert, 2017. "Radiative cooling as low-grade energy source: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 803-820.
    4. Bagiorgas, H.S. & Mihalakakou, G., 2008. "Experimental and theoretical investigation of a nocturnal radiator for space cooling," Renewable Energy, Elsevier, vol. 33(6), pages 1220-1227.
    5. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    6. Eli A. Goldstein & Aaswath P. Raman & Shanhui Fan, 2017. "Sub-ambient non-evaporative fluid cooling with the sky," Nature Energy, Nature, vol. 2(9), pages 1-7, September.
    7. Castro Aguilar, Jose L. & Gentle, Angus R. & Smith, Geoff B. & Chen, Dong, 2015. "A method to measure total atmospheric long-wave down-welling radiation using a low cost infrared thermometer tilted to the vertical," Energy, Elsevier, vol. 81(C), pages 233-244.
    8. Hu, Mingke & Zhao, Bin & Ao, Xianze & Su, Yuehong & Wang, Yunyun & Pei, Gang, 2018. "Comparative analysis of different surfaces for integrated solar heating and radiative cooling: A numerical study," Energy, Elsevier, vol. 155(C), pages 360-369.
    9. Hu, Mingke & Pei, Gang & Wang, Qiliang & Li, Jing & Wang, Yunyun & Ji, Jie, 2016. "Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system," Applied Energy, Elsevier, vol. 179(C), pages 899-908.
    10. Wang, Yunyun & Pei, Gang & Zhang, Longcan, 2014. "Effects of frame shadow on the PV character of a photovoltaic/thermal system," Applied Energy, Elsevier, vol. 130(C), pages 326-332.
    11. Li, Jing & Ren, Xiao & Yuan, Weiqi & Li, Zhaomeng & Pei, Gang & Su, Yuehong & Kutlu, Çağrı & Ji, Jie & Riffat, Saffa, 2018. "Experimental study on a novel photovoltaic thermal system using amorphous silicon cells deposited on stainless steel," Energy, Elsevier, vol. 159(C), pages 786-798.
    12. Zevenhoven, Ron & Fält, Martin, 2018. "Radiative cooling through the atmospheric window: A third, less intrusive geoengineering approach," Energy, Elsevier, vol. 152(C), pages 27-33.
    13. Hu, Mingke & Zhao, Bin & Ao, Xianze & Su, Yuehong & Pei, Gang, 2018. "Parametric analysis and annual performance evaluation of an air-based integrated solar heating and radiative cooling collector," Energy, Elsevier, vol. 165(PA), pages 811-824.
    14. Bahaidarah, H. & Subhan, Abdul & Gandhidasan, P. & Rehman, S., 2013. "Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions," Energy, Elsevier, vol. 59(C), pages 445-453.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Su, Yuehong & Pei, Gang, 2019. "A novel strategy for a building-integrated diurnal photovoltaic and all-day radiative cooling system," Energy, Elsevier, vol. 183(C), pages 892-900.
    2. Zhao, Bin & Hu, Mingke & Ao, Xianze & Xuan, Qingdong & Pei, Gang, 2020. "Spectrally selective approaches for passive cooling of solar cells: A review," Applied Energy, Elsevier, vol. 262(C).
    3. Alimohammadian, Mehdi & Dinarvand, Saeed & Mahian, Omid, 2022. "Innovative strategy of passive sub-ambient radiative cooler through incorporation of a thermal rectifier to double-layer nanoparticle-based coating," Energy, Elsevier, vol. 247(C).
    4. Vall, Sergi & Johannes, Kévyn & David, Damien & Castell, Albert, 2020. "A new flat-plate radiative cooling and solar collector numerical model: Evaluation and metamodeling," Energy, Elsevier, vol. 202(C).
    5. Lv, Song & Ji, Yishuang & Qian, Zuoqin & He, Wei & Hu, Zhongting & Liu, Minghou, 2021. "A novel strategy of enhancing sky radiative cooling by solar photovoltaic-thermoelectric cooler," Energy, Elsevier, vol. 219(C).
    6. Feng, Chi & Lei, Yue & Huang, Xianqi & Zhang, Weidong & Feng, Ya & Zheng, Xing, 2022. "Experimental and theoretical analysis of sub-ambient cooling with longwave radiative coating," Renewable Energy, Elsevier, vol. 193(C), pages 634-644.
    7. Xing, Daoming & Li, Nianping & Cui, Haijiao & Zhou, Linxuan & Liu, Qingqing, 2020. "Theoretical study of infrared transparent cover preventing condensation on indoor radiant cooling surfaces," Energy, Elsevier, vol. 201(C).
    8. Ahmed, Salman & Li, Senji & Li, Zhenpeng & Xiao, Gang & Ma, Tao, 2022. "Enhanced radiative cooling of solar cells by integration with heat pipe," Applied Energy, Elsevier, vol. 308(C).
    9. Zuazua-Ros, Amaia & Ramos, Juan Carlos & Martín-Gómez, César & Gómez-Acebo, Tomás & Erell, Evyatar, 2020. "Performance and feasibility assessment of a hybrid cooling system for office buildings based on heat dissipation panels," Energy, Elsevier, vol. 205(C).
    10. Hu, Mingke & Zhao, Bin & Suhendri, & Ao, Xianze & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Pei, Gang, 2019. "Radiative cooling: A review of fundamentals, materials, applications, and prospects," Applied Energy, Elsevier, vol. 236(C), pages 489-513.
    2. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    3. Hu, Mingke & Zhao, Bin & Ao, Xianze & Zhao, Pinghui & Su, Yuehong & Pei, Gang, 2018. "Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system," Applied Energy, Elsevier, vol. 231(C), pages 288-300.
    4. Vall, Sergi & Johannes, Kévyn & David, Damien & Castell, Albert, 2020. "A new flat-plate radiative cooling and solar collector numerical model: Evaluation and metamodeling," Energy, Elsevier, vol. 202(C).
    5. Hu, Mingke & Zhao, Bin & Ao, Xianze & Su, Yuehong & Pei, Gang, 2018. "Parametric analysis and annual performance evaluation of an air-based integrated solar heating and radiative cooling collector," Energy, Elsevier, vol. 165(PA), pages 811-824.
    6. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Hu, Mingke & Zhao, Bin & Ao, Xianze & Feng, Junsheng & Cao, Jingyu & Su, Yuehong & Pei, Gang, 2019. "Experimental study on a hybrid photo-thermal and radiative cooling collector using black acrylic paint as the panel coating," Renewable Energy, Elsevier, vol. 139(C), pages 1217-1226.
    8. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Hu, Mingke & Zhao, Bin & Li, Jing & Wang, Yunyun & Pei, Gang, 2017. "Preliminary thermal analysis of a combined photovoltaic–photothermic–nocturnal radiative cooling system," Energy, Elsevier, vol. 137(C), pages 419-430.
    10. Hu, Mingke & Zhao, Bin & Suhendri, & Ao, Xianze & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Su, Yuehong & Pei, Gang, 2019. "A novel strategy for a building-integrated diurnal photovoltaic and all-day radiative cooling system," Energy, Elsevier, vol. 183(C), pages 892-900.
    12. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Jiao, Dongsheng & Pei, Gang, 2019. "Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Sergi Vall & Marc Medrano & Cristian Solé & Albert Castell, 2020. "Combined Radiative Cooling and Solar Thermal Collection: Experimental Proof of Concept," Energies, MDPI, vol. 13(4), pages 1-13, February.
    14. Marco Noro & Simone Mancin & Roger Riehl, 2021. "Energy and Economic Sustainability of a Trigeneration Solar System Using Radiative Cooling in Mediterranean Climate," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    15. Zhang, Kai & Zhao, Dongliang & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2018. "Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA," Applied Energy, Elsevier, vol. 224(C), pages 371-381.
    16. Lv, Song & Ji, Yishuang & Ji, Yitong & Qian, Zuoqin & Ren, Juwen & Zhang, Bolong & Lai, Yin & Yang, Jiahao & Chang, Zhihao, 2022. "Experimental and numerical comparative investigation on 24h radiative cooling performance of a simple organic composite film," Energy, Elsevier, vol. 261(PA).
    17. Cairui Yu & Dongmei Shen & Qingyang Jiang & Wei He & Hancheng Yu & Zhongting Hu & Hongbing Chen & Pengkun Yu & Sheng Zhang, 2019. "Numerical and Experimental Study on the Heat Dissipation Performance of a Novel System," Energies, MDPI, vol. 13(1), pages 1-26, December.
    18. Ji, Yishuang & Lv, Song, 2023. "Experimental and numerical investigation on a radiative cooling driving thermoelectric generator system," Energy, Elsevier, vol. 268(C).
    19. Tian, Xinyi & Wang, Jun & Ji, Jie & Wang, Chuyao & Ke, Wei & Yuan, Shuang, 2023. "A multifunctional curved CIGS photovoltaic/thermal roof system: A numerical and experimental investigation," Energy, Elsevier, vol. 273(C).
    20. Liu, Junwei & Yuan, Jianjuan & Zhang, Ji & Tang, Huajie & Huang, Ke & Xing, Jincheng & Zhang, Debao & Zhou, Zhihua & Zuo, Jian, 2021. "Performance evaluation of various strategies to improve sub-ambient radiative sky cooling," Renewable Energy, Elsevier, vol. 169(C), pages 1305-1316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:175:y:2019:i:c:p:677-686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.