IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v174y2019icp768-778.html
   My bibliography  Save this article

Thermodynamic, economic analysis and optimization of a heat pump driven desalination system with open-air humidification dehumidification configurations

Author

Listed:
  • He, W.F.
  • Chen, J.J.
  • Zhen, M.R.
  • Han, D.

Abstract

In this paper, the heat pump is coupled to a humidification dehumidification desalination system, with open-air configurations, to enhance the energy conversion efficiency. After establishing the energetic and entropic equations for all the thermal processes, the correlations between the desalination performance and the critical parameters, including the compression pressure ratio, pinch temperature difference of the condenser, terminal temperature difference of the evaporator, are revealed. Afterwards, the mass flow rate ratio and effectiveness during humidification and dehumidification are treated as the decision variables to optimize the energy conversion efficiency of the heat pump driven desalination system. The simulation results show that the actual top water production and gained-output-ratio of the desalination system reach 88.34 kgh−1 and 3.72 at the balance condition of the humidifier. It is also obtained that raising the compression pressure ratio and reducing the pinch temperature difference of the condenser and terminal temperature difference of the evaporator, can promote the desalination performance. Furthermore, based on the particle swarm optimization algorithm, the best desalination performance, with 151.03 kgh−1 for the water production, and 5.95 for the gained-output-ratio, is optimized within the prescribed range of the decision variables, while the corresponding cost of produced water arrives at 0.015$L−1 through the economic analysis.

Suggested Citation

  • He, W.F. & Chen, J.J. & Zhen, M.R. & Han, D., 2019. "Thermodynamic, economic analysis and optimization of a heat pump driven desalination system with open-air humidification dehumidification configurations," Energy, Elsevier, vol. 174(C), pages 768-778.
  • Handle: RePEc:eee:energy:v:174:y:2019:i:c:p:768-778
    DOI: 10.1016/j.energy.2019.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219304098
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McGovern, Ronan K. & Thiel, Gregory P. & Prakash Narayan, G. & Zubair, Syed M. & Lienhard, John H., 2013. "Performance limits of zero and single extraction humidification-dehumidification desalination systems," Applied Energy, Elsevier, vol. 102(C), pages 1081-1090.
    2. Kabeel, A.E. & Hamed, A.M. & El-Agouz, S.A., 2010. "Cost analysis of different solar still configurations," Energy, Elsevier, vol. 35(7), pages 2901-2908.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soltani, Milad & Hajizadeh Aghdam, Abolfazl & Aghaziarati, Zeinab, 2023. "Design, fabrication and performance assessment of a novel portable solar-based poly-generation system," Renewable Energy, Elsevier, vol. 202(C), pages 699-712.
    2. Lawal, Dahiru U. & Qasem, Naef A.A., 2020. "Humidification-dehumidification desalination systems driven by thermal-based renewable and low-grade energy sources: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Agouz, S.A. & Abd El-Aziz, G.B. & Awad, A.M., 2014. "Solar desalination system using spray evaporation," Energy, Elsevier, vol. 76(C), pages 276-283.
    2. Dumka, Pankaj & Mishra, Dhananjay R., 2020. "Performance evaluation of single slope solar still augmented with the ultrasonic fogger," Energy, Elsevier, vol. 190(C).
    3. Sathyamurthy, Ravishankar & El-Agouz, S.A. & Nagarajan, P.K. & Subramani, J. & Arunkumar, T. & Mageshbabu, D. & Madhu, B. & Bharathwaaj, R. & Prakash, N., 2017. "A Review of integrating solar collectors to solar still," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1069-1097.
    4. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Evaluation of a solar-powered spray-assisted low-temperature desalination technology," Applied Energy, Elsevier, vol. 211(C), pages 997-1008.
    5. Al-Sulttani, Ali O. & Ahsan, Amimul & Hanoon, Ammar N. & Rahman, A. & Daud, N.N.N. & Idrus, S., 2017. "Hourly yield prediction of a double-slope solar still hybrid with rubber scrapers in low-latitude areas based on the particle swarm optimization technique," Applied Energy, Elsevier, vol. 203(C), pages 280-303.
    6. Shoeibi, Shahin & Rahbar, Nader & Esfahlani, Ahad Abedini & Kargarsharifabad, Hadi, 2021. "Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation," Renewable Energy, Elsevier, vol. 171(C), pages 227-244.
    7. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    8. Junjie Chen & Dong Han & Weifeng He & Majid Amidpour, 2021. "Establishing Surrogate Model to Predict the Optimal Thermodynamic and Economic Performance of a Packed Bed Humidifier via Multi-Objective Optimization," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    9. Heydari, Ali, 2022. "Experimental analysis of hybrid dryer combined with spiral solar air heater and auxiliary heating system: Energy, exergy and economic analysis," Renewable Energy, Elsevier, vol. 198(C), pages 1162-1175.
    10. He Fu & Min Dai & Hanwen Song & Xiaoting Hou & Fahid Riaz & Shuai Li & Ke Yang & Imran Ali & Changsheng Peng & Muhammad Sultan, 2021. "Updates on Evaporation and Condensation Methods for the Performance Improvement of Solar Stills," Energies, MDPI, vol. 14(21), pages 1-26, October.
    11. Lorena Cornejo-Ponce & Patricia Vilca-Salinas & María Janet Arenas-Herrera & Claudia Moraga-Contreras & Héctor Tapia-Caroca & Stavros Kukulis-Martínez, 2022. "Small-Scale Solar-Powered Desalination Plants: A Sustainable Alternative Water-Energy Nexus to Obtain Water for Chile’s Coastal Areas," Energies, MDPI, vol. 15(23), pages 1-38, December.
    12. Husam S. Al-Duais & Muhammad Azzam Ismail & Zakaria Alcheikh Mahmoud Awad & Karam M. Al-Obaidi, 2022. "Performance Evaluation of Solar-Powered Atmospheric Water Harvesting Using Different Glazing Materials in the Tropical Built Environment: An Experimental Study," Energies, MDPI, vol. 15(9), pages 1-19, April.
    13. Mahmoud S. El-Sebaey & Asko Ellman & Ahmed Hegazy & Tarek Ghonim, 2020. "Experimental Analysis and CFD Modeling for Conventional Basin-Type Solar Still," Energies, MDPI, vol. 13(21), pages 1-17, November.
    14. Shoeibi, Shahin & Kargarsharifabad, Hadi & Mirjalily, Seyed Ali Agha & Zargarazad, Mojtaba, 2021. "Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator," Applied Energy, Elsevier, vol. 304(C).
    15. Talaat, M.A. & Awad, M.M. & Zeidan, E.B. & Hamed, A.M., 2018. "Solar-powered portable apparatus for extracting water from air using desiccant solution," Renewable Energy, Elsevier, vol. 119(C), pages 662-674.
    16. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    17. Huang, Jian & He, Yurong & Hu, Yanwei & Wang, Xinzhi, 2018. "Steam generation enabled by a high efficiency solar absorber with thermal concentration," Energy, Elsevier, vol. 165(PB), pages 1282-1291.
    18. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2018. "Energy efficiency of membrane distillation up to high salinity: Evaluating critical system size and optimal membrane thickness," Applied Energy, Elsevier, vol. 211(C), pages 715-734.
    19. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    20. Mauro Luberti & Mauro Capocelli, 2023. "Enhanced Humidification–Dehumidification (HDH) Systems for Sustainable Water Desalination," Energies, MDPI, vol. 16(17), pages 1-28, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:174:y:2019:i:c:p:768-778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.