IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v174y2019icp534-542.html
   My bibliography  Save this article

Parametric analysis on the performance of flat plate collector with transparent insulation material

Author

Listed:
  • Zhou, Liqun
  • Wang, Yiping
  • Huang, Qunwu

Abstract

The transparent insulation materials (TIM) can effectively improve the performance of flat plate solar collector in cold weather. A three dimension numerical model of flat plate collector with TIM has been developed in this paper. The computational fluid dynamics (CFD) have been used to simulate the model. The Renormalization-group (RNG) k-ε model and Discrete Ordinates (DO) radiation model were adopted. The influences of the environment conditions, mass flow rate, tilt angle and transmittance on the performance of the collector with TIM were analyzed. A good agreement was achieved between the CFD prediction and the previous experiment. The result shows that the collector with TIM is more efficient, when ambient temperature is low. For various wind speeds, the new collector's efficiency has a slightly change. The transmittance of TIM is a key parameter to achieve high performance for the collector. When the transmittance is below 80%, the collector with TIM has no the advantage of being good value. The optimum mass flow rate is 0.06 kg/s under corresponding conditions. The tilt angle of the collector with TIM has less effect compared with the conventional one.

Suggested Citation

  • Zhou, Liqun & Wang, Yiping & Huang, Qunwu, 2019. "Parametric analysis on the performance of flat plate collector with transparent insulation material," Energy, Elsevier, vol. 174(C), pages 534-542.
  • Handle: RePEc:eee:energy:v:174:y:2019:i:c:p:534-542
    DOI: 10.1016/j.energy.2019.02.168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219303743
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cerón, J.F. & Pérez-García, J. & Solano, J.P. & García, A. & Herrero-Martín, R., 2015. "A coupled numerical model for tube-on-sheet flat-plate solar liquid collectors. Analysis and validation of the heat transfer mechanisms," Applied Energy, Elsevier, vol. 140(C), pages 275-287.
    2. Kessentini, Hamdi & Castro, Jesus & Capdevila, Roser & Oliva, Assensi, 2014. "Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system," Applied Energy, Elsevier, vol. 133(C), pages 206-223.
    3. Kaushika, N. D. & Sumathy, K., 2003. "Solar transparent insulation materials: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(4), pages 317-351, August.
    4. Khamis Mansour, M., 2013. "Thermal analysis of novel minichannel-based solar flat-plate collector," Energy, Elsevier, vol. 60(C), pages 333-343.
    5. Zheng, Wandong & Zhang, Huan & You, Shijun & Fu, Yindan & Zheng, Xuejing, 2017. "Thermal performance analysis of a metal corrugated packing solar air collector in cold regions," Applied Energy, Elsevier, vol. 203(C), pages 938-947.
    6. Yadav, Anil Singh & Bhagoria, J.L., 2013. "A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate," Energy, Elsevier, vol. 55(C), pages 1127-1142.
    7. Pandey, Krishna Murari & Chaurasiya, Rajesh, 2017. "A review on analysis and development of solar flat plate collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 641-650.
    8. Yadav, Anil Singh & Bhagoria, J.L., 2013. "Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 60-79.
    9. Alvarez, A. & Cabeza, O. & Muñiz, M.C. & Varela, L.M., 2010. "Experimental and numerical investigation of a flat-plate solar collector," Energy, Elsevier, vol. 35(9), pages 3707-3716.
    10. Sharafeldin, Mahmoud Ahmed & Gróf, Gyula & Mahian, Omid, 2017. "Experimental study on the performance of a flat-plate collector using WO3/Water nanofluids," Energy, Elsevier, vol. 141(C), pages 2436-2444.
    11. Subiantoro, Alison & Ooi, Kim Tiow, 2013. "Analytical models for the computation and optimization of single and double glazing flat plate solar collectors with normal and small air gap spacing," Applied Energy, Elsevier, vol. 104(C), pages 392-399.
    12. Ravi Kumar, K. & Reddy, K.S., 2009. "Thermal analysis of solar parabolic trough with porous disc receiver," Applied Energy, Elsevier, vol. 86(9), pages 1804-1812, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashour, Amr Fathy & El-Awady, Ahmed T. & Tawfik, Mohsen A., 2022. "Numerical investigation on the thermal performance of a flat plate solar collector using ZnO & CuO water nanofluids under Egyptian weathering conditions," Energy, Elsevier, vol. 240(C).
    2. Verma, Sujit Kumar & Sharma, Kamal & Gupta, Naveen Kumar & Soni, Pawan & Upadhyay, Neeraj, 2020. "“Performance comparison of innovative spiral shaped solar collector design with conventional flat plate solar collector”," Energy, Elsevier, vol. 194(C).
    3. Ilze Polikarpova & Roberts Kakis & Ieva Pakere & Dagnija Blumberga, 2021. "Optimizing Large-Scale Solar Field Efficiency: Latvia Case Study," Energies, MDPI, vol. 14(14), pages 1-13, July.
    4. Liu, He & Tian, You & Liu, Jia'ao & Zhang, Dongwei & Wu, Xuehong & Li, Zengyao, 2023. "Performance analysis of solar drying system with sunlight transparent thermally insulating aerogels," Energy, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Liqun & Wang, Yiping & Huang, Qunwu, 2019. "CFD investigation of a new flat plate collector with additional front side transparent insulation for use in cold regions," Renewable Energy, Elsevier, vol. 138(C), pages 754-763.
    2. Saffarian, Mohammad Reza & Moravej, Mojtaba & Doranehgard, Mohammad Hossein, 2020. "Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid," Renewable Energy, Elsevier, vol. 146(C), pages 2316-2329.
    3. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    4. Verma, Sujit Kumar & Sharma, Kamal & Gupta, Naveen Kumar & Soni, Pawan & Upadhyay, Neeraj, 2020. "“Performance comparison of innovative spiral shaped solar collector design with conventional flat plate solar collector”," Energy, Elsevier, vol. 194(C).
    5. Pandey, Krishna Murari & Chaurasiya, Rajesh, 2017. "A review on analysis and development of solar flat plate collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 641-650.
    6. Filipović, P. & Dović, D. & Horvat, I. & Ranilović, B., 2023. "Evaluation of a novel polymer solar collector using numerical and experimental methods," Energy, Elsevier, vol. 284(C).
    7. Jin, Dongxu & Zhang, Manman & Wang, Ping & Xu, Shasha, 2015. "Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 89(C), pages 178-190.
    8. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    9. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "Numerical investigation of flow through inclined fins under the absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 141(C), pages 468-481.
    11. Juanicó, Luis E. & Di Lalla, Nicolás & González, Alejandro D., 2017. "Full thermal-hydraulic and solar modeling to study low-cost solar collectors based on a single long LDPE hose," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 187-195.
    12. Anil Kumar & Man-Hoe Kim, 2016. "CFD Analysis on the Thermal Hydraulic Performance of an SAH Duct with Multi V-Shape Roughened Ribs," Energies, MDPI, vol. 9(6), pages 1-23, May.
    13. Kumar, Anil & Kim, Man-Hoe, 2016. "Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 635-652.
    14. Miroslav Čekon & Richard Slávik, 2017. "A Non-Ventilated Solar Façade Concept Based on Selective and Transparent Insulation Material Integration: An Experimental Study," Energies, MDPI, vol. 10(6), pages 1-21, June.
    15. Sharma, Harish Kumar & Kumar, Satish & Verma, Sujit Kumar, 2022. "Comparative performance analysis of flat plate solar collector having circular &trapezoidal corrugated absorber plate designs," Energy, Elsevier, vol. 253(C).
    16. Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "RSM approach for modeling and optimization of designing parameters for inclined fins of solar air heater," Renewable Energy, Elsevier, vol. 136(C), pages 48-68.
    17. Hu, Mingke & Zhao, Bin & Ao, Xianze & Zhao, Pinghui & Su, Yuehong & Pei, Gang, 2018. "Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system," Applied Energy, Elsevier, vol. 231(C), pages 288-300.
    18. Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B., 2014. "Effect of roughness geometries on heat transfer enhancement in solar thermal systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 347-378.
    19. Singh, Sukhmeet & Singh, Bikramjit & Hans, V.S. & Gill, R.S., 2015. "CFD (computational fluid dynamics) investigation on Nusselt number and friction factor of solar air heater duct roughened with non-uniform cross-section transverse rib," Energy, Elsevier, vol. 84(C), pages 509-517.
    20. Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:174:y:2019:i:c:p:534-542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.