IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v166y2019icp401-413.html
   My bibliography  Save this article

Multi-aspect evaluation of integrated forest-based biofuel production pathways: Part 1. Product yields & energetic performance

Author

Listed:
  • Jafri, Yawer
  • Wetterlund, Elisabeth
  • Anheden, Marie
  • Kulander, Ida
  • Håkansson, Åsa
  • Furusjö, Erik

Abstract

Forest-based biofuels are strategically important in forest-rich countries like Sweden but the technical performance of several promising production pathways is poorly documented. This study examines product yields and energy efficiencies in six commercially relevant forest-based “drop-in” and “high blend” biofuel production pathways by developing detailed spreadsheet energy balance models. The models are in turn based on pilot-scale performance data from the literature, supplemented with input from technology developers and experts. In most pathways, biofuel production is integrated with a market pulp mill and/or a crude oil refinery. Initial conversion is by pyrolysis, gasification or lignin depolymerization and intermediate products are upgraded by hydrotreatment or catalytic synthesis.

Suggested Citation

  • Jafri, Yawer & Wetterlund, Elisabeth & Anheden, Marie & Kulander, Ida & Håkansson, Åsa & Furusjö, Erik, 2019. "Multi-aspect evaluation of integrated forest-based biofuel production pathways: Part 1. Product yields & energetic performance," Energy, Elsevier, vol. 166(C), pages 401-413.
  • Handle: RePEc:eee:energy:v:166:y:2019:i:c:p:401-413
    DOI: 10.1016/j.energy.2018.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218319893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2016. "Comparison of integration options for gasification-based biofuel production systems – Economic and greenhouse gas emission implications," Energy, Elsevier, vol. 111(C), pages 272-294.
    2. Carvalho, Lara & Lundgren, Joakim & Wetterlund, Elisabeth & Wolf, Jens & Furusjö, Erik, 2018. "Methanol production via black liquor co-gasification with expanded raw material base – Techno-economic assessment," Applied Energy, Elsevier, vol. 225(C), pages 570-584.
    3. Börjesson Hagberg, Martin & Pettersson, Karin & Ahlgren, Erik O., 2016. "Bioenergy futures in Sweden – Modeling integration scenarios for biofuel production," Energy, Elsevier, vol. 109(C), pages 1026-1039.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karin Ericsson, 2021. "Potential for the Integrated Production of Biojet Fuel in Swedish Plant Infrastructures," Energies, MDPI, vol. 14(20), pages 1-23, October.
    2. Liang, Jie & Shan, Guangcun & Sun, Yifei, 2021. "Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Jafri, Yawer & Wetterlund, Elisabeth & Mesfun, Sennai & Rådberg, Henrik & Mossberg, Johanna & Hulteberg, Christian & Furusjö, Erik, 2020. "Combining expansion in pulp capacity with production of sustainable biofuels – Techno-economic and greenhouse gas emissions assessment of drop-in fuels from black liquor part-streams," Applied Energy, Elsevier, vol. 279(C).
    4. Jafri, Yawer & Wetterlund, Elisabeth & Anheden, Marie & Kulander, Ida & Håkansson, Åsa & Furusjö, Erik, 2019. "Multi-aspect evaluation of integrated forest-based biofuel production pathways: Part 2. economics, GHG emissions, technology maturity and production potentials," Energy, Elsevier, vol. 172(C), pages 1312-1328.
    5. Zetterholm, Jonas & Mossberg, Johanna & Jafri, Yawer & Wetterlund, Elisabeth, 2022. "We need stable, long-term policy support! — Evaluating the economic rationale behind the prevalent investor lament for forest-based biofuel production," Applied Energy, Elsevier, vol. 318(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zetterholm, Jonas & Pettersson, Karin & Leduc, Sylvain & Mesfun, Sennai & Lundgren, Joakim & Wetterlund, Elisabeth, 2018. "Resource efficiency or economy of scale: Biorefinery supply chain configurations for co-gasification of black liquor and pyrolysis liquids," Applied Energy, Elsevier, vol. 230(C), pages 912-924.
    2. Jonas Zetterholm & Elina Bryngemark & Johan Ahlström & Patrik Söderholm & Simon Harvey & Elisabeth Wetterlund, 2020. "Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models," Sustainability, MDPI, vol. 12(17), pages 1-28, September.
    3. Zetterholm, Jonas & Wetterlund, Elisabeth & Pettersson, Karin & Lundgren, Joakim, 2018. "Evaluation of value chain configurations for fast pyrolysis of lignocellulosic biomass - Integration, feedstock, and product choice," Energy, Elsevier, vol. 144(C), pages 564-575.
    4. Jafri, Yawer & Wetterlund, Elisabeth & Anheden, Marie & Kulander, Ida & Håkansson, Åsa & Furusjö, Erik, 2019. "Multi-aspect evaluation of integrated forest-based biofuel production pathways: Part 2. economics, GHG emissions, technology maturity and production potentials," Energy, Elsevier, vol. 172(C), pages 1312-1328.
    5. Gal Hochman & Chrysostomos Tabakis, 2020. "Biofuels and Their Potential in South Korea," Sustainability, MDPI, vol. 12(17), pages 1-17, September.
    6. Cataldo De Blasio & Gabriel Salierno & Andrea Magnano, 2021. "Implications on Feedstock Processing and Safety Issues for Semi-Batch Operations in Supercritical Water Gasification of Biomass," Energies, MDPI, vol. 14(10), pages 1-19, May.
    7. Jafri, Yawer & Wetterlund, Elisabeth & Mesfun, Sennai & Rådberg, Henrik & Mossberg, Johanna & Hulteberg, Christian & Furusjö, Erik, 2020. "Combining expansion in pulp capacity with production of sustainable biofuels – Techno-economic and greenhouse gas emissions assessment of drop-in fuels from black liquor part-streams," Applied Energy, Elsevier, vol. 279(C).
    8. Holmgren, Kristina M. & Berntsson, Thore & Lönnqvist, Tomas, 2018. "Profitability and greenhouse gas emissions of gasification-based biofuel production - Analysis of sector specific policy instruments and comparison to conventional biomass conversion technologies," Energy, Elsevier, vol. 165(PA), pages 997-1007.
    9. Baharam Roy & Peter Kleine-Möllhoff & Antoine Dalibard, 2022. "Superheated Steam Torrefaction of Biomass Residues with Valorisation of Platform Chemicals Part—2: Economic Assessment and Commercialisation Opportunities," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    10. Asada, Raphael & Stern, Tobias, 2018. "Competitive Bioeconomy? Comparing Bio-based and Non-bio-based Primary Sectors of the World," Ecological Economics, Elsevier, vol. 149(C), pages 120-128.
    11. Nguyen, Truong & Gustavsson, Leif, 2020. "Production of district heat, electricity and/or biomotor fuels in renewable-based energy systems," Energy, Elsevier, vol. 202(C).
    12. Mohd Idris, Muhammad Nurariffudin & Hashim, Haslenda & Leduc, Sylvain & Yowargana, Ping & Kraxner, Florian & Woon, Kok Sin, 2021. "Deploying bioenergy for decarbonizing Malaysian energy sectors and alleviating renewable energy poverty," Energy, Elsevier, vol. 232(C).
    13. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    14. Bramstoft, Rasmus & Pizarro-Alonso, Amalia & Jensen, Ida Græsted & Ravn, Hans & Münster, Marie, 2020. "Modelling of renewable gas and renewable liquid fuels in future integrated energy systems," Applied Energy, Elsevier, vol. 268(C).
    15. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Magdeldin, Mohamed & Järvinen, Mika, 2020. "Supercritical water gasification of Kraft black liquor: Process design, analysis, pulp mill integration and economic evaluation," Applied Energy, Elsevier, vol. 262(C).
    17. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Svanberg, Martin & Ellis, Joanne & Lundgren, Joakim & Landälv, Ingvar, 2018. "Renewable methanol as a fuel for the shipping industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1217-1228.
    19. Lee, Boreum & Lee, Hyunjun & Lim, Dongjun & Brigljević, Boris & Cho, Wonchul & Cho, Hyun-Seok & Kim, Chang-Hee & Lim, Hankwon, 2020. "Renewable methanol synthesis from renewable H2 and captured CO2: How can power-to-liquid technology be economically feasible?," Applied Energy, Elsevier, vol. 279(C).
    20. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2019. "The role of life cycle assessment in the sustainable transition to a decarbonised gas network through green gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 16-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:166:y:2019:i:c:p:401-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.