IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v150y2018icp410-433.html
   My bibliography  Save this article

Estimation of heat losses due to wind effects from linear parabolic secondary reflector –receiver of solar LFR module

Author

Listed:
  • Reddy, K.S.
  • Balaji, Shanmugapriya
  • Sundararajan, T.

Abstract

A numerical study is carried out to determine the heat losses caused by natural and forced convection as well as radiation from the parabolic secondary receiver of a Solar Linear Fresnel Reflector system. The geometric configuration considered corresponds to an absorber tube placed in an open aperture. Thermal performance of the receiver with the acceptance angle θa= 45°, truncation point H/W = 0.6, focal position of the absorber f= 7.9 m and gap between the secondary reflector and absorber tube (G) to the height of the secondary reflector (H) at G/H = 0.14 are considered for the thermal analysis. Thermal losses from the reflector over a wide range of temperature(373K−773K), diameter ratio (0.14−0.27) and emissivity (0.01−1) are analysed. Realistic conditions including the effects of wind and commerically available absorber diameter and emissivity values are considered to assess the performance of the receiver. Investigation is carried out to determine the heat losses at wind velocities up to 10 m/s. Nusselt number correlations are proposed for determining the heat losses from a solar cavity open aperture with CPC profile. The proposed correlations are functions of the temperature ratio(Th/T∞) , diameter ratio, emissivity, Grashof number and Reynolds number and they are very useful for predicting the heat losses from the linear receiver of a typical solar LFR system.

Suggested Citation

  • Reddy, K.S. & Balaji, Shanmugapriya & Sundararajan, T., 2018. "Estimation of heat losses due to wind effects from linear parabolic secondary reflector –receiver of solar LFR module," Energy, Elsevier, vol. 150(C), pages 410-433.
  • Handle: RePEc:eee:energy:v:150:y:2018:i:c:p:410-433
    DOI: 10.1016/j.energy.2018.02.125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218303591
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.02.125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reddy, K.S. & Natarajan, Sendhil Kumar & Veershetty, G., 2015. "Experimental performance investigation of modified cavity receiver with fuzzy focal solar dish concentrator," Renewable Energy, Elsevier, vol. 74(C), pages 148-157.
    2. Qiu, Yu & He, Ya-Ling & Cheng, Ze-Dong & Wang, Kun, 2015. "Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods," Applied Energy, Elsevier, vol. 146(C), pages 162-173.
    3. Sahoo, Sudhansu S. & Varghese, Shinu M. & Suresh Kumar, C. & Viswanathan, S.P. & Singh, Suneet & Banerjee, Rangan, 2013. "Experimental investigation and computational validation of heat losses from the cavity receiver used in linear Fresnel reflector solar thermal system," Renewable Energy, Elsevier, vol. 55(C), pages 18-23.
    4. Choudhury, C. & Sehgal, H.K., 1986. "A fresnel strip reflector-concentrator for tubular solar-energy collectors," Applied Energy, Elsevier, vol. 23(2), pages 143-154.
    5. Manikumar, R. & Valan Arasu, A., 2014. "Heat loss characteristics study of a trapezoidal cavity absorber with and without plate for a linear Fresnel reflector solar concentrator system," Renewable Energy, Elsevier, vol. 63(C), pages 98-108.
    6. Singh, Panna Lal & Sarviya, R.M. & Bhagoria, J.L., 2010. "Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers," Applied Energy, Elsevier, vol. 87(2), pages 541-550, February.
    7. Balaji, Shanmugapriya & Reddy, K.S. & Sundararajan, T., 2016. "Optical modelling and performance analysis of a solar LFR receiver system with parabolic and involute secondary reflectors," Applied Energy, Elsevier, vol. 179(C), pages 1138-1151.
    8. Natarajan, Sendhil Kumar & Reddy, K.S. & Mallick, Tapas Kumar, 2012. "Heat loss characteristics of trapezoidal cavity receiver for solar linear concentrating system," Applied Energy, Elsevier, vol. 93(C), pages 523-531.
    9. Grena, Roberto & Tarquini, Pietro, 2011. "Solar linear Fresnel collector using molten nitrates as heat transfer fluid," Energy, Elsevier, vol. 36(2), pages 1048-1056.
    10. Beltagy, Hani & Semmar, Djaffar & Lehaut, Christophe & Said, Noureddine, 2017. "Theoretical and experimental performance analysis of a Fresnel type solar concentrator," Renewable Energy, Elsevier, vol. 101(C), pages 782-793.
    11. Salazar, Germán A. & Fraidenraich, Naum & de Oliveira, Carlos Antonio Alves & de Castro Vilela, Olga & Hongn, Marcos & Gordon, Jeffrey M., 2017. "Analytic modeling of parabolic trough solar thermal power plants," Energy, Elsevier, vol. 138(C), pages 1148-1156.
    12. Facão, Jorge & Oliveira, Armando C., 2011. "Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator," Renewable Energy, Elsevier, vol. 36(1), pages 90-96.
    13. Flores Larsen, S. & Altamirano, M. & Hernández, A., 2012. "Heat loss of a trapezoidal cavity absorber for a linear Fresnel reflecting solar concentrator," Renewable Energy, Elsevier, vol. 39(1), pages 198-206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbón, A. & López-Smeetz, C. & Bayón, L. & Pardellas, A., 2020. "Wind effects on heat loss from a receiver with longitudinal tilt angle of small-scale linear Fresnel reflectors for urban applications," Renewable Energy, Elsevier, vol. 162(C), pages 2166-2181.
    2. López-Núñez, Oscar A. & Alfaro-Ayala, J. Arturo & Ramírez-Minguela, J.J. & Belman-Flores, J.M. & Jaramillo, O.A., 2020. "Optimization of a Linear Fresnel Reflector Applying Computational Fluid Dynamics, Entropy Generation Rate and Evolutionary Programming," Renewable Energy, Elsevier, vol. 152(C), pages 698-712.
    3. López-Núñez, Oscar A. & Alfaro-Ayala, J. Arturo & Jaramillo, O.A. & Ramírez-Minguela, J.J. & Castro, J. Carlos & Damian-Ascencio, Cesar E. & Cano-Andrade, Sergio, 2020. "A numerical analysis of the energy and entropy generation rate in a Linear Fresnel Reflector using computational fluid dynamics," Renewable Energy, Elsevier, vol. 146(C), pages 1083-1100.
    4. Chinnasamy Subramaniyan & Jothirathinam Subramani & Balasubramanian Kalidasan & Natarajan Anbuselvan & Thangaraj Yuvaraj & Natarajan Prabaharan & Tomonobu Senjyu, 2021. "Investigation on the Optical Design and Performance of a Single-Axis-Tracking Solar Parabolic trough Collector with a Secondary Reflector," Sustainability, MDPI, vol. 13(17), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling & Qiu, Yu, 2018. "A novel optical optimization model for linear Fresnel reflector concentrators," Renewable Energy, Elsevier, vol. 129(PA), pages 486-499.
    2. Qiu, Yu & He, Ya-Ling & Wu, Ming & Zheng, Zhang-Jing, 2016. "A comprehensive model for optical and thermal characterization of a linear Fresnel solar reflector with a trapezoidal cavity receiver," Renewable Energy, Elsevier, vol. 97(C), pages 129-144.
    3. Abbas, R. & Martínez-Val, J.M., 2015. "Analytic optical design of linear Fresnel collectors with variable widths and shifts of mirrors," Renewable Energy, Elsevier, vol. 75(C), pages 81-92.
    4. Abbas, R. & Sebastián, A. & Montes, M.J. & Valdés, M., 2018. "Optical features of linear Fresnel collectors with different secondary reflector technologies," Applied Energy, Elsevier, vol. 232(C), pages 386-397.
    5. Ma, Jun & Wang, Cheng-Long & Zhou, Yuan & Wang, Rui-Dong, 2021. "Optimized design of a linear Fresnel collector with a compound parabolic secondary reflector," Renewable Energy, Elsevier, vol. 171(C), pages 141-148.
    6. Vouros, Alexandros & Mathioulakis, Emmanouil & Papanicolaou, Elias & Belessiotis, Vassilis, 2019. "On the optimal shape of secondary reflectors for linear Fresnel collectors," Renewable Energy, Elsevier, vol. 143(C), pages 1454-1464.
    7. Barbón, A. & López-Smeetz, C. & Bayón, L. & Pardellas, A., 2020. "Wind effects on heat loss from a receiver with longitudinal tilt angle of small-scale linear Fresnel reflectors for urban applications," Renewable Energy, Elsevier, vol. 162(C), pages 2166-2181.
    8. Roostaee, Amin & Ameri, Mehran, 2019. "Effect of Linear Fresnel Concentrators field key parameters on reflectors configuration, Trapezoidal Cavity Receiver dimension, and heat loss," Renewable Energy, Elsevier, vol. 134(C), pages 1447-1464.
    9. Gupta, M.K. & Kaushik, S.C. & Ranjan, K.R. & Panwar, N.L. & Reddy, V. Siva & Tyagi, S.K., 2015. "Thermodynamic performance evaluation of solar and other thermal power generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 567-582.
    10. Dabiri, Soroush & Khodabandeh, Erfan & Poorfar, Alireza Khoeini & Mashayekhi, Ramin & Toghraie, Davood & Abadian Zade, Seyed Ali, 2018. "Parametric investigation of thermal characteristic in trapezoidal cavity receiver for a linear Fresnel solar collector concentrator," Energy, Elsevier, vol. 153(C), pages 17-26.
    11. Andrade, L.A. & Barrozo, M.A.S. & Vieira, L.G.M., 2016. "A study on dynamic heating in solar dish concentrators," Renewable Energy, Elsevier, vol. 87(P1), pages 501-508.
    12. Hongn, Marcos & Flores Larsen, Silvana, 2018. "Hydrothermal model for small-scale linear Fresnel absorbers with non-uniform stepwise solar distribution," Applied Energy, Elsevier, vol. 223(C), pages 329-346.
    13. Flores Larsen, S. & Altamirano, M. & Hernández, A., 2012. "Heat loss of a trapezoidal cavity absorber for a linear Fresnel reflecting solar concentrator," Renewable Energy, Elsevier, vol. 39(1), pages 198-206.
    14. Sebastián, Andrés & Abbas, Rubén & Valdés, Manuel & Casanova, Jesús, 2018. "Innovative thermal storage strategies for Fresnel-based concentrating solar plants with East-West orientation," Applied Energy, Elsevier, vol. 230(C), pages 983-995.
    15. Karimi, Reza & Gheinani, Touraj Tavakoli & Madadi Avargani, Vahid, 2018. "A detailed mathematical model for thermal performance analysis of a cylindrical cavity receiver in a solar parabolic dish collector system," Renewable Energy, Elsevier, vol. 125(C), pages 768-782.
    16. Edouard Montanet & Sylvain Rodat & Quentin Falcoz & Fabien Roget, 2023. "Experimental and Numerical Evaluation of Solar Receiver Heat Losses of a Commercial 9 MWe Linear Fresnel Power Plant," Energies, MDPI, vol. 16(23), pages 1-18, December.
    17. Abbas, R. & Muñoz, J. & Martínez-Val, J.M., 2012. "Steady-state thermal analysis of an innovative receiver for linear Fresnel reflectors," Applied Energy, Elsevier, vol. 92(C), pages 503-515.
    18. Qiu, Yu & Li, Ming-Jia & Wang, Kun & Liu, Zhan-Bin & Xue, Xiao-Dai, 2017. "Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 1394-1407.
    19. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    20. Dellicompagni, Pablo & Franco, Judith, 2019. "Potential uses of a prototype linear Fresnel concentration system," Renewable Energy, Elsevier, vol. 136(C), pages 1044-1054.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:150:y:2018:i:c:p:410-433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.