IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp2351-2361.html
   My bibliography  Save this article

Knock characterization and development of a new knock indicator for dual-fuel engines

Author

Listed:
  • Lounici, M.S.
  • Benbellil, M.A.
  • Loubar, K.
  • Niculescu, D.C.
  • Tazerout, M.

Abstract

Dual-fuel mode is a promising technique for natural gas utilization in internal combustion engines. However, for high loads operation, the engine risks to go through a hazardous knocking regime. Knock phenomenon is an abnormal combustion that can cause some disagreeable effects in engines where it occurs. It can even induce brutal irreparable engine damage under severe knocking conditions. The present paper aims first to highlight and characterize knock in dual-fuel engines fueled with natural gas as main fuel and diesel as pilot fuel. Description of this phenomenon is investigated in this type of engines. Knock behavior in dual-fuel engine is compared to spark ignition engine case. Cyclical variability of this phenomenon is studied. A new knock indicator, based on in-cylinder pressure analysis, is proposed in order to identify and evaluate knock in dual-fuel engines. In addition, knock effects on heat release, cylinder wall temperature and engine performance and emissions are examined. New techniques to delay knock appearance in this type of engines are investigated. It is found that the increase in pilot fuel quantity is an effective technique to delay knock onset in NG dual-fuel engines.

Suggested Citation

  • Lounici, M.S. & Benbellil, M.A. & Loubar, K. & Niculescu, D.C. & Tazerout, M., 2017. "Knock characterization and development of a new knock indicator for dual-fuel engines," Energy, Elsevier, vol. 141(C), pages 2351-2361.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2351-2361
    DOI: 10.1016/j.energy.2017.11.138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217319965
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.11.138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdelaal, Mohsen M. & Rabee, Basem A. & Hegab, Abdelrahman H., 2013. "Effect of adding oxygen to the intake air on a dual-fuel engine performance, emissions, and knock tendency," Energy, Elsevier, vol. 61(C), pages 612-620.
    2. Lounici, Mohand Said & Loubar, Khaled & Tarabet, Lyes & Balistrou, Mourad & Niculescu, Dan-Catalin & Tazerout, Mohand, 2014. "Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions," Energy, Elsevier, vol. 64(C), pages 200-211.
    3. Liu, Jie & Yang, Fuyuan & Wang, Hewu & Ouyang, Minggao & Hao, Shougang, 2013. "Effects of pilot fuel quantity on the emissions characteristics of a CNG/diesel dual fuel engine with optimized pilot injection timing," Applied Energy, Elsevier, vol. 110(C), pages 201-206.
    4. Li, Weifeng & Liu, Zhongchang & Wang, Zhongshu, 2016. "Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine," Energy, Elsevier, vol. 94(C), pages 728-741.
    5. Vafamehr, Hassan & Cairns, Alasdair & Sampson, Ojon & Koupaie, Mohammadmohsen Moslemin, 2016. "The competing chemical and physical effects of transient fuel enrichment on heavy knock in an optical spark ignition engine," Applied Energy, Elsevier, vol. 179(C), pages 687-697.
    6. Sahoo, B.B. & Sahoo, N. & Saha, U.K., 2009. "Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines--A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1151-1184, August.
    7. Shen, Zhaojie & Liu, Zhongchang & Tian, Jing & Liu, Jiangwei, 2014. "Investigation of in-cylinder gas stratification of diesel engine during intake and compression stroke," Energy, Elsevier, vol. 72(C), pages 671-679.
    8. Zhen, Xudong & Wang, Yang & Xu, Shuaiqing & Zhu, Yongsheng & Tao, Chengjun & Xu, Tao & Song, Mingzhi, 2012. "The engine knock analysis – An overview," Applied Energy, Elsevier, vol. 92(C), pages 628-636.
    9. Saravanan, N. & Nagarajan, G. & Narayanasamy, S., 2008. "An experimental investigation on DI diesel engine with hydrogen fuel," Renewable Energy, Elsevier, vol. 33(3), pages 415-421.
    10. Yang, Bo & Xi, Chengxun & Wei, Xing & Zeng, Ke & Lai, Ming-Chia, 2015. "Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load," Applied Energy, Elsevier, vol. 143(C), pages 130-137.
    11. Yousefi, Amin & Birouk, Madjid, 2017. "Investigation of natural gas energy fraction and injection timing on the performance and emissions of a dual-fuel engine with pre-combustion chamber under low engine load," Applied Energy, Elsevier, vol. 189(C), pages 492-505.
    12. Maghbouli, Amin & Yang, Wenming & An, Hui & Shafee, Sina & Li, Jing & Mohammadi, Samira, 2014. "Modeling knocking combustion in hydrogen assisted compression ignition diesel engines," Energy, Elsevier, vol. 76(C), pages 768-779.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. da Costa, Roberto Berlini Rodrigues & Valle, Ramón Molina & Hernández, Juan J. & Malaquias, Augusto César Teixeira & Coronado, Christian J.R. & Pujatti, Fabrício José Pacheco, 2020. "Experimental investigation on the potential of biogas/ethanol dual-fuel spark-ignition engine for power generation: Combustion, performance and pollutant emission analysis," Applied Energy, Elsevier, vol. 261(C).
    2. Wang, Lei & Zhao, Zhenfeng & Yu, Chuncun & Cui, Huasheng, 2022. "Experimental study of aviation kerosene engine with PJI system," Energy, Elsevier, vol. 248(C).
    3. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid, 2020. "Split diesel injection effect on knocking of natural gas/diesel dual-fuel engine at high load conditions," Applied Energy, Elsevier, vol. 279(C).
    4. Benbellil, Messaoud Abdelalli & Lounici, Mohand Said & Loubar, Khaled & Tazerout, Mohand, 2022. "Investigation of natural gas enrichment with high hydrogen participation in dual fuel diesel engine," Energy, Elsevier, vol. 243(C).
    5. Meng, Hao & Ji, Changwei & Su, Teng & Yang, Jinxin & Chang, Ke & Xin, Gu & Wang, Shuofeng, 2022. "Analyzing characteristics of knock in a hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 250(C).
    6. Feng, Dengquan & Wei, Haiqiao & Pan, Mingzhang & Zhou, Lei & Hua, Jianxiong, 2018. "Combustion performance of dual-injection using n-butanol direct-injection and gasoline port fuel-injection in a SI engine," Energy, Elsevier, vol. 160(C), pages 573-581.
    7. Meng, Hao & Ji, Changwei & Yang, Jinxin & Chang, Ke & Xin, Gu & Wang, Shuofeng, 2022. "Experimental understanding of the relationship between combustion/flow/flame velocity and knock in a hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 258(C).
    8. Shi, Hao & Uddeen, Kalim & An, Yanzhao & Pei, Yiqiang & Johansson, Bengt, 2021. "Multiple spark plugs coupled with pressure sensors: A new approach for knock mechanism study on SI engines," Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benbellil, Messaoud Abdelalli & Lounici, Mohand Said & Loubar, Khaled & Tazerout, Mohand, 2022. "Investigation of natural gas enrichment with high hydrogen participation in dual fuel diesel engine," Energy, Elsevier, vol. 243(C).
    2. Yousefi, Amin & Birouk, Madjid, 2017. "Investigation of natural gas energy fraction and injection timing on the performance and emissions of a dual-fuel engine with pre-combustion chamber under low engine load," Applied Energy, Elsevier, vol. 189(C), pages 492-505.
    3. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Li, Menghan & Wu, Hanming & Zhang, Tiechen & Shen, Boxiong & Zhang, Qiang & Li, Zhenguo, 2020. "A comprehensive review of pilot ignited high pressure direct injection natural gas engines: Factors affecting combustion, emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Hegab, Abdelrahman & La Rocca, Antonino & Shayler, Paul, 2017. "Towards keeping diesel fuel supply and demand in balance: Dual-fuelling of diesel engines with natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 666-697.
    6. Sergejus Lebedevas & Tomas Čepaitis, 2021. "Parametric Analysis of the Combustion Cycle of a Diesel Engine for Operation on Natural Gas," Sustainability, MDPI, vol. 13(5), pages 1-23, March.
    7. Di Blasio, G. & Belgiorno, G. & Beatrice, C., 2017. "Effects on performances, emissions and particle size distributions of a dual fuel (methane-diesel) light-duty engine varying the compression ratio," Applied Energy, Elsevier, vol. 204(C), pages 726-740.
    8. Cho, Jungkeun & Park, Sangjun & Song, Soonho, 2019. "The effects of the air-fuel ratio on a stationary diesel engine under dual-fuel conditions and multi-objective optimization," Energy, Elsevier, vol. 187(C).
    9. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid, 2020. "Split diesel injection effect on knocking of natural gas/diesel dual-fuel engine at high load conditions," Applied Energy, Elsevier, vol. 279(C).
    10. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid, 2018. "Effect of swirl ratio on NG/diesel dual-fuel combustion at low to high engine load conditions," Applied Energy, Elsevier, vol. 229(C), pages 375-388.
    11. Xu, Min & Cheng, Wei & Li, Zhi & Zhang, Hongfei & An, Tao & Meng, Zhaokang, 2016. "Pre-injection strategy for pilot diesel compression ignition natural gas engine," Applied Energy, Elsevier, vol. 179(C), pages 1185-1193.
    12. Hernández, J.J. & Lapuerta, M. & Barba, J., 2015. "Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine," Energy, Elsevier, vol. 89(C), pages 148-157.
    13. Yilmaz, I.T. & Gumus, M., 2018. "Effects of hydrogen addition to the intake air on performance and emissions of common rail diesel engine," Energy, Elsevier, vol. 142(C), pages 1104-1113.
    14. Li, Yu & Li, Hailin & Guo, Hongsheng & Li, Yongzhi & Yao, Mingfa, 2017. "A numerical investigation on methane combustion and emissions from a natural gas-diesel dual fuel engine using CFD model," Applied Energy, Elsevier, vol. 205(C), pages 153-162.
    15. Barik, Debabrata & Murugan, S. & Sivaram, N.M. & Baburaj, E. & Shanmuga Sundaram, P., 2017. "Experimental investigation on the behavior of a direct injection diesel engine fueled with Karanja methyl ester-biogas dual fuel at different injection timings," Energy, Elsevier, vol. 118(C), pages 127-138.
    16. Xu, Shijie & Zhong, Shenghui & Pang, Kar Mun & Yu, Senbin & Jangi, Mehdi & Bai, Xue-song, 2020. "Effects of ambient methanol on pollutants formation in dual-fuel spray combustion at varying ambient temperatures: A large-eddy simulation," Applied Energy, Elsevier, vol. 279(C).
    17. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    18. Yang, W.M. & An, H. & Li, J. & Duan, L., 2015. "Impact of methane addition on the performance of biodiesel fueled diesel engine," Applied Energy, Elsevier, vol. 160(C), pages 784-792.
    19. Li, Weifeng & Liu, Zhongchang & Wang, Zhongshu, 2016. "Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine," Energy, Elsevier, vol. 94(C), pages 728-741.
    20. Roberta De Robbio & Maria Cristina Cameretti & Ezio Mancaruso & Raffaele Tuccillo & Bianca Maria Vaglieco, 2021. "CFD Study and Experimental Validation of a Dual Fuel Engine: Effect of Engine Speed," Energies, MDPI, vol. 14(14), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2351-2361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.