IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v139y2017icp991-1002.html
   My bibliography  Save this article

Integrated collector storage solar water heater under partial vacuum

Author

Listed:
  • Souliotis, Manolis
  • Papaefthimiou, Spiros
  • Caouris, Yiannis G.
  • Zacharopoulos, Aggelos
  • Quinlan, Patrick
  • Smyth, Mervyn

Abstract

The work focuses on the experimental study of the heat diode mechanism in an Integrated Collector Storage Solar Water Heater (ICSSWH) for domestic applications. The solar device combines a horizontal cylindrical vessel with an asymmetric reflector trough (Compound Parabolic Concentrator – CPC). The cylindrical storage tank comprises two concentric cylindrical vessels: the outer absorbing vessel and the inner storage vessel. The annulus between the cylindrical vessels is partially depressurized and contains a small amount of water serving as Phase Change Material (PCM), which changes phase (mainly at low temperatures) thus producing vapor and creating a thermal diode transfer mechanism from the outer to the inner surfaces of the vessels. Several experimental results, including uncertainty analysis, are demonstrated through diagrams depicting temperature variations, mean daily efficiency and thermal losses coefficient. Additionally results from the variation of the temperature and the total pressure inside annulus are also presented. The results clearly show that the vapor's pressure plays the most important role regarding the thermal performance of the device.

Suggested Citation

  • Souliotis, Manolis & Papaefthimiou, Spiros & Caouris, Yiannis G. & Zacharopoulos, Aggelos & Quinlan, Patrick & Smyth, Mervyn, 2017. "Integrated collector storage solar water heater under partial vacuum," Energy, Elsevier, vol. 139(C), pages 991-1002.
  • Handle: RePEc:eee:energy:v:139:y:2017:i:c:p:991-1002
    DOI: 10.1016/j.energy.2017.08.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217314500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.08.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tripanagnostopoulos, Y. & Souliotis, M., 2004. "ICS solar systems with horizontal cylindrical storage tank and reflector of CPC or involute geometry," Renewable Energy, Elsevier, vol. 29(1), pages 13-38.
    2. Garnier, C. & Currie, J. & Muneer, T., 2009. "Integrated collector storage solar water heater: Temperature stratification," Applied Energy, Elsevier, vol. 86(9), pages 1465-1469, September.
    3. Tripanagnostopoulos, Y. & Souliotis, M., 2004. "Integrated collector storage solar systems with asymmetric CPC reflectors," Renewable Energy, Elsevier, vol. 29(2), pages 223-248.
    4. Souliotis, M. & Tripanagnostopoulos, Y., 2008. "Study of the distribution of the absorbed solar radiation on the performance of a CPC-type ICS water heater," Renewable Energy, Elsevier, vol. 33(5), pages 846-858.
    5. Singh, Ramkishore & Lazarus, Ian J. & Souliotis, Manolis, 2016. "Recent developments in integrated collector storage (ICS) solar water heaters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 270-298.
    6. Tripanagnostopoulos, Y. & Souliotis, M., 2004. "ICS solar systems with horizontal (E–W) and vertical (N–S) cylindrical water storage tank," Renewable Energy, Elsevier, vol. 29(1), pages 73-96.
    7. Henderson, D. & Junaidi, H. & Muneer, T. & Grassie, T. & Currie, J., 2007. "Experimental and CFD investigation of an ICSSWH at various inclinations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1087-1116, August.
    8. de Beijer, H.A., 1998. "Product development in solar water heating," Renewable Energy, Elsevier, vol. 15(1), pages 201-204.
    9. Tripanagnostopoulos, Y. & Souliotis, M., 2006. "ICS solar systems with two water tanks," Renewable Energy, Elsevier, vol. 31(11), pages 1698-1717.
    10. Souliotis, M. & Kalogirou, S. & Tripanagnostopoulos, Y., 2009. "Modelling of an ICS solar water heater using artificial neural networks and TRNSYS," Renewable Energy, Elsevier, vol. 34(5), pages 1333-1339.
    11. Arnaoutakis, Nektarios & Souliotis, Manolis & Papaefthimiou, Spiros, 2017. "Comparative experimental Life Cycle Assessment of two commercial solar thermal devices for domestic applications," Renewable Energy, Elsevier, vol. 111(C), pages 187-200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smyth, M. & Quinlan, P. & Mondol, J.D. & Zacharopoulos, A. & McLarnon, D. & Pugsley, A., 2018. "The experimental evaluation and improvements of a novel thermal diode pre-heat solar water heater under simulated solar conditions," Renewable Energy, Elsevier, vol. 121(C), pages 116-122.
    2. Ruth M. Saint & Céline Garnier & Francesco Pomponi & John Currie, 2018. "Thermal Performance through Heat Retention in Integrated Collector-Storage Solar Water Heaters: A Review," Energies, MDPI, vol. 11(6), pages 1-26, June.
    3. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo, 2023. "Multi-objective optimization for comparative energy and economic analyses of a novel evacuated solar collector prototype (ICSSWH) under different weather conditions," Renewable Energy, Elsevier, vol. 210(C), pages 701-714.
    4. Smyth, Mervyn & Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo & Mondol, Jayanta & Muhumuza, Ronald & Pugsley, Adrian & Zacharopoulos, Aggelos, 2020. "Modelling and experimental evaluation of an innovative Integrated Collector Storage Solar Water Heating (ICSSWH) prototype," Renewable Energy, Elsevier, vol. 157(C), pages 974-986.
    5. Farzan, Hadi & Ameri, Mehran & Mahmoudi, Mojtaba, 2023. "Thermal assessment of a new planar thermal diode integrated collector storage solar water heater in different partial vacuums: An experimental study," Renewable Energy, Elsevier, vol. 208(C), pages 119-129.
    6. Muhumuza, Ronald & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn & Pugsley, Adrian & Giuzio, Giovanni Francesco & Kurmis, Danas, 2019. "Experimental investigation of horizontally operating thermal diode solar water heaters with differing absorber materials under simulated conditions," Renewable Energy, Elsevier, vol. 138(C), pages 1051-1064.
    7. Barone, G. & Buonomano, A. & Palmieri, V. & Palombo, A., 2022. "A prototypal high-vacuum integrated collector storage solar water heater: Experimentation, design, and optimization through a new in-house 3D dynamic simulation model," Energy, Elsevier, vol. 238(PC).
    8. Nektarios Arnaoutakis & Andreas P. Vouros & Maria Milousi & Yannis G. Caouris & Giorgos Panaras & Antonios Tourlidakis & Kyriakos Vafiadis & Giouli Mihalakakou & Christos S. Garoufalis & Zacharias Fro, 2022. "Design, Energy, Environmental and Cost Analysis of an Integrated Collector Storage Solar Water Heater Based on Multi-Criteria Methodology," Energies, MDPI, vol. 15(5), pages 1-21, February.
    9. Xie, Yujie & Simbamba, Mzee Mohamed & Zhou, Jinzhi & Jiang, Fujian & Cao, Xiaoling & Sun, Liangliang & Yuan, Yanping, 2022. "Numerical investigation of the effect factors on the performance of a novel PV integrated collector storage solar water heater," Renewable Energy, Elsevier, vol. 195(C), pages 1354-1367.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Ramkishore & Lazarus, Ian J. & Souliotis, Manolis, 2016. "Recent developments in integrated collector storage (ICS) solar water heaters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 270-298.
    2. Devanarayanan, K. & Kalidasa Murugavel, K., 2014. "Integrated collector storage solar water heater with compound parabolic concentrator – development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 51-64.
    3. Souliotis, M. & Chemisana, D. & Caouris, Y.G. & Tripanagnostopoulos, Y., 2013. "Experimental study of integrated collector storage solar water heaters," Renewable Energy, Elsevier, vol. 50(C), pages 1083-1094.
    4. Yassen, Tadahmun A. & Mokhlif, Nassir D. & Eleiwi, Muhammad Asmail, 2019. "Performance investigation of an integrated solar water heater with corrugated absorber surface for domestic use," Renewable Energy, Elsevier, vol. 138(C), pages 852-860.
    5. Nektarios Arnaoutakis & Andreas P. Vouros & Maria Milousi & Yannis G. Caouris & Giorgos Panaras & Antonios Tourlidakis & Kyriakos Vafiadis & Giouli Mihalakakou & Christos S. Garoufalis & Zacharias Fro, 2022. "Design, Energy, Environmental and Cost Analysis of an Integrated Collector Storage Solar Water Heater Based on Multi-Criteria Methodology," Energies, MDPI, vol. 15(5), pages 1-21, February.
    6. Barone, G. & Buonomano, A. & Palmieri, V. & Palombo, A., 2022. "A prototypal high-vacuum integrated collector storage solar water heater: Experimentation, design, and optimization through a new in-house 3D dynamic simulation model," Energy, Elsevier, vol. 238(PC).
    7. Souliotis, M. & Kalogirou, S. & Tripanagnostopoulos, Y., 2009. "Modelling of an ICS solar water heater using artificial neural networks and TRNSYS," Renewable Energy, Elsevier, vol. 34(5), pages 1333-1339.
    8. Garnier, Celine & Muneer, Tariq & Currie, John, 2018. "Numerical and empirical evaluation of a novel building integrated collector storage solar water heater," Renewable Energy, Elsevier, vol. 126(C), pages 281-295.
    9. Farzan, Hadi & Ameri, Mehran & Mahmoudi, Mojtaba, 2023. "Thermal assessment of a new planar thermal diode integrated collector storage solar water heater in different partial vacuums: An experimental study," Renewable Energy, Elsevier, vol. 208(C), pages 119-129.
    10. Smyth, M. & Eames, P.C. & Norton, B., 2006. "Integrated collector storage solar water heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 503-538, December.
    11. Gertzos, K.P. & Caouris, Y.G. & Panidis, Th., 2010. "Optimal design and placement of serpentine heat exchangers for indirect heat withdrawal, inside flat plate integrated collector storage solar water heaters (ICSSWH)," Renewable Energy, Elsevier, vol. 35(8), pages 1741-1750.
    12. Tripanagnostopoulos, Y. & Souliotis, M., 2006. "ICS solar systems with two water tanks," Renewable Energy, Elsevier, vol. 31(11), pages 1698-1717.
    13. Souliotis, M. & Tripanagnostopoulos, Y., 2008. "Study of the distribution of the absorbed solar radiation on the performance of a CPC-type ICS water heater," Renewable Energy, Elsevier, vol. 33(5), pages 846-858.
    14. Evangelos Bellos & Dimitrios N. Korres & Christos Tzivanidis, 2023. "Investigation of a Compound Parabolic Collector with a Flat Glazing," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    15. Xie, Yujie & Simbamba, Mzee Mohamed & Zhou, Jinzhi & Jiang, Fujian & Cao, Xiaoling & Sun, Liangliang & Yuan, Yanping, 2022. "Numerical investigation of the effect factors on the performance of a novel PV integrated collector storage solar water heater," Renewable Energy, Elsevier, vol. 195(C), pages 1354-1367.
    16. Kessentini, Hamdi & Bouden, Chiheb, 2013. "Numerical and experimental study of an integrated solar collector with CPC reflectors," Renewable Energy, Elsevier, vol. 57(C), pages 577-586.
    17. Erdemir, Dogan & Atesoglu, Hakan & Altuntop, Necdet, 2019. "Experimental investigation on enhancement of thermal performance with obstacle placing in the horizontal hot water tank used in solar domestic hot water system," Renewable Energy, Elsevier, vol. 138(C), pages 187-197.
    18. Muhumuza, Ronald & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn & Pugsley, Adrian & Giuzio, Giovanni Francesco & Kurmis, Danas, 2019. "Experimental investigation of horizontally operating thermal diode solar water heaters with differing absorber materials under simulated conditions," Renewable Energy, Elsevier, vol. 138(C), pages 1051-1064.
    19. Smyth, M. & Pugsley, A. & Hanna, G. & Zacharopoulos, A. & Mondol, J. & Besheer, A. & Savvides, A., 2019. "Experimental performance characterisation of a Hybrid Photovoltaic/Solar Thermal Façade module compared to a flat Integrated Collector Storage Solar Water Heater module," Renewable Energy, Elsevier, vol. 137(C), pages 137-143.
    20. Azzolin, Marco & Mariani, Andrea & Moro, Lorenzo & Tolotto, Andrea & Toninelli, Paolo & Del Col, Davide, 2018. "Mathematical model of a thermosyphon integrated storage solar collector," Renewable Energy, Elsevier, vol. 128(PA), pages 400-415.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:139:y:2017:i:c:p:991-1002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.