IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v139y2017icp871-882.html
   My bibliography  Save this article

Modified exergoeconomic modeling and analysis of combined cooling heating and power system integrated with biomass-steam gasification

Author

Listed:
  • Wang, Jiangjiang
  • Mao, Tianzhi
  • Wu, Jing

Abstract

Biomass-steam gasification is an efficient unitization technology of biomass to produce gas fuel for a combined cooling, heating and power (CCHP) system. The aim of this paper is to modify the exergoeconomic method and analyze the cost allocations of multi-products from CCHP system. Firstly, two integrated CCHP schemes with biomass-steam gasification are designed. The difference lies in the gasification endothermic process driven by electricity and thermal energy from the product gas, respectively. The thermodynamic models are presented and validated. Then, a modified exergoeconomic method based on energy level is proposed to accord with the principle of high quality and high price. Finally, a case study is presented to analyze the thermodynamic performances of two CCHP schemes and the production cost allocations including electricity, chilled water for cooling (hot water for heating) and domestic hot water in different operation modes. Compared with the previous exergoeconomic method, the unit exergy cost of electricity with higher energy level increases 0.09 Yuan/kWh while the cost of other products with lower energy level decrease. The results show that the modified exergoeconomic method is more reasonable and efficient.

Suggested Citation

  • Wang, Jiangjiang & Mao, Tianzhi & Wu, Jing, 2017. "Modified exergoeconomic modeling and analysis of combined cooling heating and power system integrated with biomass-steam gasification," Energy, Elsevier, vol. 139(C), pages 871-882.
  • Handle: RePEc:eee:energy:v:139:y:2017:i:c:p:871-882
    DOI: 10.1016/j.energy.2017.08.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217314068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.08.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kohl, Thomas & Teles, Moises & Melin, Kristian & Laukkanen, Timo & Järvinen, Mika & Park, Song Won & Guidici, Reinaldo, 2015. "Exergoeconomic assessment of CHP-integrated biomass upgrading," Applied Energy, Elsevier, vol. 156(C), pages 290-305.
    2. Athari, Hassan & Soltani, Saeed & Rosen, Marc A. & Gavifekr, Masood Kordoghli & Morosuk, Tatiana, 2016. "Exergoeconomic study of gas turbine steam injection and combined power cycles using fog inlet cooling and biomass fuel," Renewable Energy, Elsevier, vol. 96(PA), pages 715-726.
    3. Morandin, Matteo & Mercangöz, Mehmet & Hemrle, Jaroslav & Maréchal, François & Favrat, Daniel, 2013. "Thermoeconomic design optimization of a thermo-electric energy storage system based on transcritical CO2 cycles," Energy, Elsevier, vol. 58(C), pages 571-587.
    4. Wang, Jiang-Jiang & Yang, Kun & Xu, Zi-Long & Fu, Chao, 2015. "Energy and exergy analyses of an integrated CCHP system with biomass air gasification," Applied Energy, Elsevier, vol. 142(C), pages 317-327.
    5. Datta, Amitava & Ganguly, Ranjan & Sarkar, Luna, 2010. "Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation," Energy, Elsevier, vol. 35(1), pages 341-350.
    6. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    7. Wang, Hairong & Yan, Jianbo & Dong, Liang, 2016. "Simulation and economic evaluation of biomass gasification with sets for heating, cooling and power production," Renewable Energy, Elsevier, vol. 99(C), pages 360-368.
    8. Wang, Jiangjiang & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas," Energy, Elsevier, vol. 93(P1), pages 801-815.
    9. Rokni, Masoud, 2014. "Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine," Energy, Elsevier, vol. 76(C), pages 19-31.
    10. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    11. Athari, Hassan & Soltani, Saeed & Seyed Mahmoudi, Seyed Mohammad & Rosen, Marc A. & Morosuk, Tatiana, 2014. "Exergoeconomic analysis of a biomass post-firing combined-cycle power plant," Energy, Elsevier, vol. 77(C), pages 553-561.
    12. Bagdanavicius, Audrius & Jenkins, Nick & Hammond, Geoffrey P., 2012. "Assessment of community energy supply systems using energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 247-255.
    13. Rokni, Masoud, 2014. "Biomass gasification integrated with a solid oxide fuel cell and Stirling engine," Energy, Elsevier, vol. 77(C), pages 6-18.
    14. Klimantos, P. & Koukouzas, N. & Katsiadakis, A. & Kakaras, E., 2009. "Air-blown biomass gasification combined cycles (BGCC): System analysis and economic assessment," Energy, Elsevier, vol. 34(5), pages 708-714.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soltanian, Salman & Aghbashlo, Mortaza & Farzad, Somayeh & Tabatabaei, Meisam & Mandegari, Mohsen & Görgens, Johann F., 2019. "Exergoeconomic analysis of lactic acid and power cogeneration from sugarcane residues through a biorefinery approach," Renewable Energy, Elsevier, vol. 143(C), pages 872-889.
    2. Wang, Jiangjiang & Li, Meng & Ren, Fukang & Li, Xiaojing & Liu, Boxiang, 2018. "Modified exergoeconomic analysis method based on energy level with reliability consideration: Cost allocations in a biomass trigeneration system," Renewable Energy, Elsevier, vol. 123(C), pages 104-116.
    3. Li, Xian & Chen, Jialing & Sun, Xiangyu & Zhao, Yao & Chong, Clive & Dai, Yanjun & Wang, Chi-Hwa, 2021. "Multi-criteria decision making of biomass gasification-based cogeneration systems with heat storage and solid dehumidification of desiccant coated heat exchangers," Energy, Elsevier, vol. 233(C).
    4. Mehrpooya, Mehdi & Khalili, Maryam & Sharifzadeh, Mohammad Mehdi Moftakhari, 2018. "Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 869-887.
    5. Roy, Dibyendu & Samanta, Samiran & Roy, Sumit & Smallbone, Andrew & Paul Roskilly, Anthony, 2023. "Fuel cell integrated carbon negative power generation from biomass," Applied Energy, Elsevier, vol. 331(C).
    6. Cao, Yan & Dhahad, Hayder A. & Hussen, Hasanen M. & Parikhani, Towhid, 2022. "Proposal and evaluation of two innovative combined gas turbine and ejector refrigeration cycles fueled by biogas: Thermodynamic and optimization analysis," Renewable Energy, Elsevier, vol. 181(C), pages 749-764.
    7. Wang, Jiangjiang & Chen, Yuzhu & Lior, Noam & Li, Weihua, 2019. "Energy, exergy and environmental analysis of a hybrid combined cooling heating and power system integrated with compound parabolic concentrated-photovoltaic thermal solar collectors," Energy, Elsevier, vol. 185(C), pages 463-476.
    8. Wang, Jiangjiang & Zhou, Yuan & Lior, Noam & Zhang, Guoqing, 2021. "Quantitative sustainability evaluations of hybrid combined cooling, heating, and power schemes integrated with solar technologies," Energy, Elsevier, vol. 231(C).
    9. Yang, Kun & Ding, Yan & Zhu, Neng & Yang, Fan & Wang, Qiaochu, 2018. "Multi-criteria integrated evaluation of distributed energy system for community energy planning based on improved grey incidence approach: A case study in Tianjin," Applied Energy, Elsevier, vol. 229(C), pages 352-363.
    10. Jin Wu & Jiangjiang Wang & Jing Wu & Chaofan Ma, 2019. "Exergy and Exergoeconomic Analysis of a Combined Cooling, Heating, and Power System Based on Solar Thermal Biomass Gasification," Energies, MDPI, vol. 12(12), pages 1-19, June.
    11. Wang, Jiangjiang & Ma, Chaofan & Wu, Jing, 2019. "Thermodynamic analysis of a combined cooling, heating and power system based on solar thermal biomass gasification☆," Applied Energy, Elsevier, vol. 247(C), pages 102-115.
    12. Lecuona-Neumann, Antonio & Famiglietti, Antonio & Legrand, Mathieu, 2019. "Theoretical study of direct vapor generation for energy integrated solar absorption machines," Renewable Energy, Elsevier, vol. 135(C), pages 1335-1353.
    13. Kallio, Sonja & Siroux, Monica, 2022. "Exergy and exergo-economic analysis of a hybrid renewable energy system under different climate conditions," Renewable Energy, Elsevier, vol. 194(C), pages 396-414.
    14. Han, Zepeng & Wang, Jiangjiang & Cui, Zhiheng & Lu, Chunyan & Qi, Xiaoling, 2021. "Multi-objective optimization and exergoeconomic analysis for a novel full-spectrum solar-assisted methanol combined cooling, heating, and power system," Energy, Elsevier, vol. 237(C).
    15. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    16. Xie, Nan & Xiao, Zhenyu & Du, Wei & Deng, Chengwei & Liu, Zhiqiang & Yang, Sheng, 2023. "Thermodynamic and exergoeconomic analysis of a proton exchange membrane fuel cell/absorption chiller CCHP system based on biomass gasification," Energy, Elsevier, vol. 262(PB).
    17. Wang, Jiangjiang & Chen, Yuzhu & Dou, Chao & Gao, Yuefen & Zhao, Zheng, 2018. "Adjustable performance analysis of combined cooling heating and power system integrated with ground source heat pump," Energy, Elsevier, vol. 163(C), pages 475-489.
    18. Zhao, Xin & Zheng, Wenyu & Hou, Zhihua & Chen, Heng & Xu, Gang & Liu, Wenyi & Chen, Honggang, 2022. "Economic dispatch of multi-energy system considering seasonal variation based on hybrid operation strategy," Energy, Elsevier, vol. 238(PA).
    19. Chen, Yuzhu & Wang, Jiangjiang & Ma, Chaofan & Gao, Yuefen, 2019. "Thermo-ecological cost assessment and optimization for a hybrid combined cooling, heating and power system coupled with compound parabolic concentrated-photovoltaic thermal solar collectors," Energy, Elsevier, vol. 176(C), pages 479-492.
    20. Wang, Jiangjiang & Lu, Zherui & Li, Meng & Lior, Noam & Li, Weihua, 2019. "Energy, exergy, exergoeconomic and environmental (4E) analysis of a distributed generation solar-assisted CCHP (combined cooling, heating and power) gas turbine system," Energy, Elsevier, vol. 175(C), pages 1246-1258.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiangjiang & Li, Meng & Ren, Fukang & Li, Xiaojing & Liu, Boxiang, 2018. "Modified exergoeconomic analysis method based on energy level with reliability consideration: Cost allocations in a biomass trigeneration system," Renewable Energy, Elsevier, vol. 123(C), pages 104-116.
    2. Casas Ledón, Yannay & González, Patricia & Concha, Scarlett & Zaror, Claudio A. & Arteaga-Pérez, Luis E., 2016. "Exergoeconomic valuation of a waste-based integrated combined cycle (WICC) for heat and power production," Energy, Elsevier, vol. 114(C), pages 239-252.
    3. Jin Wu & Jiangjiang Wang & Jing Wu & Chaofan Ma, 2019. "Exergy and Exergoeconomic Analysis of a Combined Cooling, Heating, and Power System Based on Solar Thermal Biomass Gasification," Energies, MDPI, vol. 12(12), pages 1-19, June.
    4. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    5. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.
    6. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoeconomic and environmental assessments of a combined cycle for the small scale LNG cold utilization," Applied Energy, Elsevier, vol. 204(C), pages 1148-1162.
    7. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    8. Han, Zepeng & Wang, Jiangjiang & Cui, Zhiheng & Lu, Chunyan & Qi, Xiaoling, 2021. "Multi-objective optimization and exergoeconomic analysis for a novel full-spectrum solar-assisted methanol combined cooling, heating, and power system," Energy, Elsevier, vol. 237(C).
    9. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
    10. Soltanian, Salman & Aghbashlo, Mortaza & Farzad, Somayeh & Tabatabaei, Meisam & Mandegari, Mohsen & Görgens, Johann F., 2019. "Exergoeconomic analysis of lactic acid and power cogeneration from sugarcane residues through a biorefinery approach," Renewable Energy, Elsevier, vol. 143(C), pages 872-889.
    11. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2018. "Finite sum based thermoeconomic and sustainable analyses of the small scale LNG cold utilized power generation systems," Applied Energy, Elsevier, vol. 220(C), pages 944-961.
    12. Alkan, Mehmet Ali & Keçebaş, Ali & Yamankaradeniz, Nurettin, 2013. "Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method," Energy, Elsevier, vol. 60(C), pages 426-434.
    13. Zhao, Yajing & Wang, Jiangfeng & Cao, Liyan & Wang, Yu, 2016. "Comprehensive analysis and parametric optimization of a CCP (combined cooling and power) system driven by geothermal source," Energy, Elsevier, vol. 97(C), pages 470-487.
    14. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
    15. Wang, Jiangjiang & Cui, Zhiheng & Yao, Wenqi & Huo, Shuojie, 2023. "Regulation strategies and thermodynamic analysis of combined cooling, heating, and power system integrated with biomass gasification and solid oxide fuel cell," Energy, Elsevier, vol. 266(C).
    16. Moharramian, Anahita & Soltani, Saeed & Rosen, Marc A. & Mahmoudi, S.M.S. & Bhattacharya, Tanushree, 2019. "Modified exergy and modified exergoeconomic analyses of a solar based biomass co-fired cycle with hydrogen production," Energy, Elsevier, vol. 167(C), pages 715-729.
    17. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    18. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    19. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    20. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:139:y:2017:i:c:p:871-882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.