IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v132y2017icp147-159.html
   My bibliography  Save this article

A computationally-efficient layout optimization method for real wind farms considering altitude variations

Author

Listed:
  • Wang, Longyan
  • Cholette, Michael E.
  • Tan, Andy C.C.
  • Gu, Yuantong

Abstract

In this paper, a novel computationally-efficient optimization scheme is proposed to account for the effect of wind speed variations over non-flat terrain and irregular land plot boundary. In particular, typical analytical wake models are augmented with a wind multiplier (obtained from CFD simulations) to account for the effect of altitude variations, while irregular boundaries are addressed through novel constraint handling method in an unrestricted coordinate optimization formulation. In contrast to the optimization via CFD simulation alone, the augmented wake model provides acceptably accurate results with a reasonable computational burden. The new optimization approach is subsequently applied to two real wind farms with significant altitude variations: the Gokceada Island wind farm and the Grasmere and Albany wind farm. The optimized Gokceada wind farm layout exhibits a significant cost of energy (CoE) reduction when topography is considered (over conventional, flat-terrain optimization). However, the Grasmere and Albany wind farm shows a relatively small decrease in CoE over conventional optimization. This discrepancy can be attributed to the wind characteristics in each location: the Gokceada wind farm has a relatively consistent wind direction and the optimization can use topography to carefully avoid wake interactions. In contrast, the Grasmere and Albany wind farm with less-consistent wind directions leaves no clear method to avoid wakes using topography. These results indicate that the consideration of wind farm topography can yield significant benefits and the wake interactions can be greatly reduced through careful placement of wind turbines in the case where a narrow wind directions is dominant.

Suggested Citation

  • Wang, Longyan & Cholette, Michael E. & Tan, Andy C.C. & Gu, Yuantong, 2017. "A computationally-efficient layout optimization method for real wind farms considering altitude variations," Energy, Elsevier, vol. 132(C), pages 147-159.
  • Handle: RePEc:eee:energy:v:132:y:2017:i:c:p:147-159
    DOI: 10.1016/j.energy.2017.05.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217308320
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emami, Alireza & Noghreh, Pirooz, 2010. "New approach on optimization in placement of wind turbines within wind farm by genetic algorithms," Renewable Energy, Elsevier, vol. 35(7), pages 1559-1564.
    2. Pookpunt, Sittichoke & Ongsakul, Weerakorn, 2013. "Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients," Renewable Energy, Elsevier, vol. 55(C), pages 266-276.
    3. Wang, Longyan & Tan, Andy C.C. & Gu, Yuantong & Yuan, Jianping, 2015. "A new constraint handling method for wind farm layout optimization with lands owned by different owners," Renewable Energy, Elsevier, vol. 83(C), pages 151-161.
    4. Saavedra-Moreno, B. & Salcedo-Sanz, S. & Paniagua-Tineo, A. & Prieto, L. & Portilla-Figueras, A., 2011. "Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms," Renewable Energy, Elsevier, vol. 36(11), pages 2838-2844.
    5. Wang, Longyan & Tan, Andy C.C. & Cholette, Michael E. & Gu, Yuantong, 2017. "Optimization of wind farm layout with complex land divisions," Renewable Energy, Elsevier, vol. 105(C), pages 30-40.
    6. Ucar, Aynur & Balo, Figen, 2009. "Evaluation of wind energy potential and electricity generation at six locations in Turkey," Applied Energy, Elsevier, vol. 86(10), pages 1864-1872, October.
    7. Grady, S.A. & Hussaini, M.Y. & Abdullah, M.M., 2005. "Placement of wind turbines using genetic algorithms," Renewable Energy, Elsevier, vol. 30(2), pages 259-270.
    8. Kusiak, Andrew & Song, Zhe, 2010. "Design of wind farm layout for maximum wind energy capture," Renewable Energy, Elsevier, vol. 35(3), pages 685-694.
    9. Wang, Longyan & Tan, Andy & Gu, Yuantong, 2016. "A novel control strategy approach to optimally design a wind farm layout," Renewable Energy, Elsevier, vol. 95(C), pages 10-21.
    10. Eskin, N. & Artar, H. & Tolun, S., 2008. "Wind energy potential of Gökçeada Island in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 839-851, April.
    11. Kusiak, Andrew & Li, Wenyan & Song, Zhe, 2010. "Dynamic control of wind turbines," Renewable Energy, Elsevier, vol. 35(2), pages 456-463.
    12. Song, M.X. & Chen, K. & He, Z.Y. & Zhang, X., 2013. "Bionic optimization for micro-siting of wind farm on complex terrain," Renewable Energy, Elsevier, vol. 50(C), pages 551-557.
    13. Fernando Porté-Agel & Yu-Ting Wu & Chang-Hung Chen, 2013. "A Numerical Study of the Effects of Wind Direction on Turbine Wakes and Power Losses in a Large Wind Farm," Energies, MDPI, vol. 6(10), pages 1-17, October.
    14. Gu, Huajie & Wang, Jun, 2013. "Irregular-shape wind farm micro-siting optimization," Energy, Elsevier, vol. 57(C), pages 535-544.
    15. Song, M.X. & Chen, K. & He, Z.Y. & Zhang, X., 2014. "Optimization of wind farm micro-siting for complex terrain using greedy algorithm," Energy, Elsevier, vol. 67(C), pages 454-459.
    16. Mohammadi, Sirus & Mozafari, Babak & Solimani, Soodabeh & Niknam, Taher, 2013. "An Adaptive Modified Firefly Optimisation Algorithm based on Hong's Point Estimate Method to optimal operation management in a microgrid with consideration of uncertainties," Energy, Elsevier, vol. 51(C), pages 339-348.
    17. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2012. "Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation," Renewable Energy, Elsevier, vol. 38(1), pages 16-30.
    18. Yin, Peng-Yeng & Wu, Tsai-Hung & Hsu, Ping-Yi, 2017. "Risk management of wind farm micro-siting using an enhanced genetic algorithm with simulation optimization," Renewable Energy, Elsevier, vol. 107(C), pages 508-521.
    19. DuPont, Bryony & Cagan, Jonathan & Moriarty, Patrick, 2016. "An advanced modeling system for optimization of wind farm layout and wind turbine sizing using a multi-level extended pattern search algorithm," Energy, Elsevier, vol. 106(C), pages 802-814.
    20. Song, M.X. & Chen, K. & Zhang, X. & Wang, J., 2015. "The lazy greedy algorithm for power optimization of wind turbine positioning on complex terrain," Energy, Elsevier, vol. 80(C), pages 567-574.
    21. Wagner, Markus & Day, Jareth & Neumann, Frank, 2013. "A fast and effective local search algorithm for optimizing the placement of wind turbines," Renewable Energy, Elsevier, vol. 51(C), pages 64-70.
    22. Kuo, Jim Y.J. & Romero, David A. & Beck, J. Christopher & Amon, Cristina H., 2016. "Wind farm layout optimization on complex terrains – Integrating a CFD wake model with mixed-integer programming," Applied Energy, Elsevier, vol. 178(C), pages 404-414.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyoungboo Yang & Kyungho Cho, 2019. "Simulated Annealing Algorithm for Wind Farm Layout Optimization: A Benchmark Study," Energies, MDPI, vol. 12(23), pages 1-15, November.
    2. Froese, Gabrielle & Ku, Shan Yu & Kheirabadi, Ali C. & Nagamune, Ryozo, 2022. "Optimal layout design of floating offshore wind farms," Renewable Energy, Elsevier, vol. 190(C), pages 94-102.
    3. Rae-Jin Park & Jeong-Hwan Kim & Byungchan Yoo & Minhan Yoon & Seungmin Jung, 2022. "Verification of Prediction Method Based on Machine Learning under Wake Effect Using Real-Time Digital Simulator," Energies, MDPI, vol. 15(24), pages 1-15, December.
    4. Song, Dongran & Liu, Junbo & Yang, Jian & Su, Mei & Wang, Yun & Yang, Xuebing & Huang, Lingxiang & Joo, Young Hoon, 2020. "Optimal design of wind turbines on high-altitude sites based on improved Yin-Yang pair optimization," Energy, Elsevier, vol. 193(C).
    5. Wang, Longyan & Cholette, Michael E. & Zhou, Yunkai & Yuan, Jianping & Tan, Andy C.C. & Gu, Yuantong, 2018. "Effectiveness of optimized control strategy and different hub height turbines on a real wind farm optimization," Renewable Energy, Elsevier, vol. 126(C), pages 819-829.
    6. Yang, Kyoungboo & Kwak, Gyeongil & Cho, Kyungho & Huh, Jongchul, 2019. "Wind farm layout optimization for wake effect uniformity," Energy, Elsevier, vol. 183(C), pages 983-995.
    7. Navarro Diaz, Gonzalo P. & Saulo, A. Celeste & Otero, Alejandro D., 2021. "Full wind rose wind farm simulation including wake and terrain effects for energy yield assessment," Energy, Elsevier, vol. 237(C).
    8. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Masoudi, Seiied Mohsen & Baneshi, Mehdi, 2022. "Layout optimization of a wind farm considering grids of various resolutions, wake effect, and realistic wind speed and wind direction data: A techno-economic assessment," Energy, Elsevier, vol. 244(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Yang, Kyoungboo & Kwak, Gyeongil & Cho, Kyungho & Huh, Jongchul, 2019. "Wind farm layout optimization for wake effect uniformity," Energy, Elsevier, vol. 183(C), pages 983-995.
    3. Kuo, Jim Y.J. & Romero, David A. & Beck, J. Christopher & Amon, Cristina H., 2016. "Wind farm layout optimization on complex terrains – Integrating a CFD wake model with mixed-integer programming," Applied Energy, Elsevier, vol. 178(C), pages 404-414.
    4. Guirguis, David & Romero, David A. & Amon, Cristina H., 2016. "Toward efficient optimization of wind farm layouts: Utilizing exact gradient information," Applied Energy, Elsevier, vol. 179(C), pages 110-123.
    5. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    6. Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
    7. Cuadra, L. & Ocampo-Estrella, I. & Alexandre, E. & Salcedo-Sanz, S., 2019. "A study on the impact of easements in the deployment of wind farms near airport facilities," Renewable Energy, Elsevier, vol. 135(C), pages 566-588.
    8. Kyoungboo Yang & Kyungho Cho, 2019. "Simulated Annealing Algorithm for Wind Farm Layout Optimization: A Benchmark Study," Energies, MDPI, vol. 12(23), pages 1-15, November.
    9. Rodrigues, S. & Bauer, P. & Bosman, Peter A.N., 2016. "Multi-objective optimization of wind farm layouts – Complexity, constraint handling and scalability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 587-609.
    10. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2016. "Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model," Applied Energy, Elsevier, vol. 174(C), pages 192-200.
    11. Brogna, Roberto & Feng, Ju & Sørensen, Jens Nørkær & Shen, Wen Zhong & Porté-Agel, Fernando, 2020. "A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain," Applied Energy, Elsevier, vol. 259(C).
    12. Parada, Leandro & Herrera, Carlos & Flores, Paulo & Parada, Victor, 2018. "Assessing the energy benefit of using a wind turbine micro-siting model," Renewable Energy, Elsevier, vol. 118(C), pages 591-601.
    13. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2018. "Continuous adjoint formulation for wind farm layout optimization: A 2D implementation," Applied Energy, Elsevier, vol. 228(C), pages 2333-2345.
    14. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2020. "Optimal design of wind farms in complex terrains using computational fluid dynamics and adjoint methods," Applied Energy, Elsevier, vol. 261(C).
    15. Behera, Sasmita & Sahoo, Subhrajit & Pati, B.B., 2015. "A review on optimization algorithms and application to wind energy integration to grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 214-227.
    16. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
    17. Hou, Peng & Hu, Weihao & Chen, Cong & Soltani, Mohsen & Chen, Zhe, 2016. "Optimization of offshore wind farm layout in restricted zones," Energy, Elsevier, vol. 113(C), pages 487-496.
    18. Muhammad Nabeel Hussain & Nadeem Shaukat & Ammar Ahmad & Muhammad Abid & Abrar Hashmi & Zohreh Rajabi & Muhammad Atiq Ur Rehman Tariq, 2022. "Effective Realization of Multi-Objective Elitist Teaching–Learning Based Optimization Technique for the Micro-Siting of Wind Turbines," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    19. Wang, Longyan & Cholette, Michael E. & Zhou, Yunkai & Yuan, Jianping & Tan, Andy C.C. & Gu, Yuantong, 2018. "Effectiveness of optimized control strategy and different hub height turbines on a real wind farm optimization," Renewable Energy, Elsevier, vol. 126(C), pages 819-829.
    20. Wilson, Dennis & Rodrigues, Silvio & Segura, Carlos & Loshchilov, Ilya & Hutter, Frank & Buenfil, Guillermo López & Kheiri, Ahmed & Keedwell, Ed & Ocampo-Pineda, Mario & Özcan, Ender & Peña, Sergio Iv, 2018. "Evolutionary computation for wind farm layout optimization," Renewable Energy, Elsevier, vol. 126(C), pages 681-691.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:132:y:2017:i:c:p:147-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.