IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v120y2017icp785-795.html
   My bibliography  Save this article

Utilizing primary energy savings and exergy destruction to compare centralized thermal plants and cogeneration/trigeneration systems

Author

Listed:
  • Espirito Santo, Denilson Boschiero do
  • Gallo, Waldyr Luiz Ribeiro

Abstract

Rising energy conversion processes efficiencies reduces CO2 emissions and global warming implications. Decentralized electricity production through cogeneration/trigeneration systems can save primary energy if it operates with high efficiency. High efficiency is obtained when the system produces electricity and a substantial amount of the energy rejected by the prime mover is used to meet site thermal demands. Environmental concerns and international agreements are directing governments of different countries to incentive high efficiency solutions. Centralized thermal plants and cogeneration/trigeneration efficiency are compared through efficiency indicators using the first law of thermodynamics and the second law of thermodynamics. This paper proposes the use of the primary energy savings analysis and the exergy destruction analysis to compare decentralized power production through cogeneration/trigeneration systems and centralized thermal plants. The analysis concluded that both methods achieve the same results if the thermal efficiency indicator is used to compare the methods. The analysis also revealed that trigeneration systems with the same energy input are comparable with quite different thermal efficiency centralized thermal plants. Case 1 is comparable to a 53% thermal efficiency power plant and case 2 is comparable to a 77% thermal efficiency power plant.

Suggested Citation

  • Espirito Santo, Denilson Boschiero do & Gallo, Waldyr Luiz Ribeiro, 2017. "Utilizing primary energy savings and exergy destruction to compare centralized thermal plants and cogeneration/trigeneration systems," Energy, Elsevier, vol. 120(C), pages 785-795.
  • Handle: RePEc:eee:energy:v:120:y:2017:i:c:p:785-795
    DOI: 10.1016/j.energy.2016.11.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421631787X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.11.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2016. "Evaluation of the potential of natural gas district heating cogeneration in Spain as a tool for decarbonisation of the economy," Energy, Elsevier, vol. 115(P3), pages 1513-1532.
    2. Frangopoulos, Christos A., 2012. "A method to determine the power to heat ratio, the cogenerated electricity and the primary energy savings of cogeneration systems after the European Directive," Energy, Elsevier, vol. 45(1), pages 52-61.
    3. Graus, W.H.J. & Voogt, M. & Worrell, E., 2007. "International comparison of energy efficiency of fossil power generation," Energy Policy, Elsevier, vol. 35(7), pages 3936-3951, July.
    4. Safaei, Amir & Freire, Fausto & Antunes, Carlos Henggeler, 2013. "A model for optimal energy planning of a commercial building integrating solar and cogeneration systems," Energy, Elsevier, vol. 61(C), pages 211-223.
    5. Chicco, Gianfranco & Mancarella, Pierluigi, 2007. "Trigeneration primary energy saving evaluation for energy planning and policy development," Energy Policy, Elsevier, vol. 35(12), pages 6132-6144, December.
    6. Karaali, Rabi & Öztürk, İlhan Tekin, 2015. "Thermoeconomic optimization of gas turbine cogeneration plants," Energy, Elsevier, vol. 80(C), pages 474-485.
    7. Yucer, Cem Tahsin, 2016. "Thermodynamic analysis of the part load performance for a small scale gas turbine jet engine by using exergy analysis method," Energy, Elsevier, vol. 111(C), pages 251-259.
    8. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    9. Badami, M. & Camillieri, F. & Portoraro, A. & Vigliani, E., 2014. "Energetic and economic assessment of cogeneration plants: A comparative design and experimental condition study," Energy, Elsevier, vol. 71(C), pages 255-262.
    10. Siler-Evans, Kyle & Morgan, M. Granger & Azevedo, Inês Lima, 2012. "Distributed cogeneration for commercial buildings: Can we make the economics work?," Energy Policy, Elsevier, vol. 42(C), pages 580-590.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Urbanucci, Luca & Bruno, Joan Carles & Testi, Daniele, 2019. "Thermodynamic and economic analysis of the integration of high-temperature heat pumps in trigeneration systems," Applied Energy, Elsevier, vol. 238(C), pages 516-533.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    2. Tataraki, Kalliopi G. & Kavvadias, Konstantinos C. & Maroulis, Zacharias B., 2018. "A systematic approach to evaluate the economic viability of Combined Cooling Heating and Power systems over conventional technologies," Energy, Elsevier, vol. 148(C), pages 283-295.
    3. Mundada, Aishwarya S. & Shah, Kunal K. & Pearce, J.M., 2016. "Levelized cost of electricity for solar photovoltaic, battery and cogen hybrid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 692-703.
    4. Comodi, Gabriele & Rossi, Mosè, 2016. "Energy versus economic effectiveness in CHP (combined heat and power) applications: Investigation on the critical role of commodities price, taxation and power grid mix efficiency," Energy, Elsevier, vol. 109(C), pages 124-136.
    5. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    6. Miao Li & Hailin Mu & Huanan Li, 2013. "Analysis and Assessments of Combined Cooling, Heating and Power Systems in Various Operation Modes for a Building in China, Dalian," Energies, MDPI, vol. 6(5), pages 1-22, May.
    7. Raffaello Cozzolino, 2018. "Thermodynamic Performance Assessment of a Novel Micro-CCHP System Based on a Low Temperature PEMFC Power Unit and a Half-Effect Li/Br Absorption Chiller," Energies, MDPI, vol. 11(2), pages 1-21, February.
    8. Tataraki, Kalliopi G. & Kavvadias, Konstantinos C. & Maroulis, Zacharias B., 2019. "Combined cooling heating and power systems in greenhouses. Grassroots and retrofit design," Energy, Elsevier, vol. 189(C).
    9. Tamburini, A. & Cipollina, A. & Micale, G. & Piacentino, A., 2016. "CHP (combined heat and power) retrofit for a large MED-TVC (multiple effect distillation along with thermal vapour compression) desalination plant: high efficiency assessment for different design opti," Energy, Elsevier, vol. 115(P3), pages 1548-1559.
    10. Teng, Jiaying & Wang, Wan & Mu, Xiaofei, 2020. "A novel economic analyzing method for CCHP systems based on energy cascade utilization," Energy, Elsevier, vol. 207(C).
    11. Badami, Marco & Gerboni, Raffaella & Portoraro, Armando, 2017. "Determination and assessment of indices for the energy performance of district heating with cogeneration plants," Energy, Elsevier, vol. 127(C), pages 697-703.
    12. Stojiljković, Mirko M., 2017. "Bi-level multi-objective fuzzy design optimization of energy supply systems aided by problem-specific heuristics," Energy, Elsevier, vol. 137(C), pages 1231-1251.
    13. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    14. Abbas Hamze & Yassine Ouazene & Nazir Chebbo & Imane Maatouk, 2019. "Multisources of Energy Contracting Strategy with an Ecofriendly Factor and Demand Uncertainties," Energies, MDPI, vol. 12(20), pages 1-24, October.
    15. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Rong, Aiying & Lahdelma, Risto, 2017. "An efficient model and algorithm for the transmission-constrained multi-site combined heat and power system," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1106-1117.
    17. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    18. Taner, Tolga & Sivrioglu, Mecit, 2015. "Energy–exergy analysis and optimisation of a model sugar factory in Turkey," Energy, Elsevier, vol. 93(P1), pages 641-654.
    19. Jiang, Kai & Yan, Xiaohe & Liu, Nian & Wang, Peng, 2022. "Energy trade-offs in coupled ICM and electricity market under dynamic carbon emission intensity," Energy, Elsevier, vol. 260(C).
    20. Wang, Xuan & Shu, Gequn & Tian, Hua & Wang, Rui & Cai, Jinwen, 2020. "Operation performance comparison of CCHP systems with cascade waste heat recovery systems by simulation and operation optimisation," Energy, Elsevier, vol. 206(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:120:y:2017:i:c:p:785-795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.