IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v120y2017icp332-345.html
   My bibliography  Save this article

Wind and wave energy potential in southern Caspian Sea using uncertainty analysis

Author

Listed:
  • Amirinia, Gholamreza
  • Kamranzad, Bahareh
  • Mafi, Somayeh

Abstract

In this paper, uncertainties in determining the offshore wind and wave energies were considered to estimate the wind and wave energy potentials in the southern Caspian Sea. For this purpose, 11 years of ECMWF data in 210 points were collected in the study area for the analysis. First, a SWAN model for wave modeling was performed and then, the wave and wind energies were calculated using conventional analysis. Next, the uncertainties in air density, wind speed, wind speed distribution parameters, wind turbine power performance, peak wave period, significant wave height in each peak wave period, and wave energy converter were considered and a Monte Carlo simulation for 1000 years was conducted for uncertainty analysis. Results showed that uncertainty analysis results in almost 9% lower average wave power density and 7.3% less exploitable energy than conventional analysis. In addition, wind power density computed by uncertainty analysis was on average about 4% higher than that obtained with the conventional analysis; however, the exploitable wind energy resulting from uncertainty analysis was 3% lower than the values computed by conventional analysis.

Suggested Citation

  • Amirinia, Gholamreza & Kamranzad, Bahareh & Mafi, Somayeh, 2017. "Wind and wave energy potential in southern Caspian Sea using uncertainty analysis," Energy, Elsevier, vol. 120(C), pages 332-345.
  • Handle: RePEc:eee:energy:v:120:y:2017:i:c:p:332-345
    DOI: 10.1016/j.energy.2016.11.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216317182
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.11.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jung, Sungmoon & Arda Vanli, O. & Kwon, Soon-Duck, 2013. "Wind energy potential assessment considering the uncertainties due to limited data," Applied Energy, Elsevier, vol. 102(C), pages 1492-1503.
    2. Kose, Ramazan & Ozgur, M. Arif & Erbas, Oguzhan & Tugcu, Abtullah, 2004. "The analysis of wind data and wind energy potential in Kutahya, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(3), pages 277-288, June.
    3. Abbaspour, M. & Rahimi, R., 2011. "Iran atlas of offshore renewable energies," Renewable Energy, Elsevier, vol. 36(1), pages 388-398.
    4. Mirhosseini, M. & Sharifi, F. & Sedaghat, A., 2011. "Assessing the wind energy potential locations in province of Semnan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 449-459, January.
    5. Keyhani, A. & Ghasemi-Varnamkhasti, M. & Khanali, M. & Abbaszadeh, R., 2010. "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran," Energy, Elsevier, vol. 35(1), pages 188-201.
    6. Hughes, Michael G. & Heap, Andrew D., 2010. "National-scale wave energy resource assessment for Australia," Renewable Energy, Elsevier, vol. 35(8), pages 1783-1791.
    7. Lotfalipour, Mohammad Reza & Falahi, Mohammad Ali & Ashena, Malihe, 2010. "Economic growth, CO2 emissions, and fossil fuels consumption in Iran," Energy, Elsevier, vol. 35(12), pages 5115-5120.
    8. Hernández-Escobedo, Q. & Saldaña-Flores, R. & Rodríguez-García, E.R. & Manzano-Agugliaro, F., 2014. "Wind energy resource in Northern Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 890-914.
    9. Kwon, Soon-Duck, 2010. "Uncertainty analysis of wind energy potential assessment," Applied Energy, Elsevier, vol. 87(3), pages 856-865, March.
    10. Fadai, Dawud, 2007. "The feasibility of manufacturing wind turbines in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 536-542, April.
    11. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    12. Mostafaeipour, Ali & Abarghooei, Hossein, 2008. "Harnessing wind energy at Manjil area located in north of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1758-1766, August.
    13. Mostafaeipour, A. & Sedaghat, A. & Dehghan-Niri, A.A. & Kalantar, V., 2011. "Wind energy feasibility study for city of Shahrbabak in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2545-2556, August.
    14. Lejerskog, Erik & Boström, Cecilia & Hai, Ling & Waters, Rafael & Leijon, Mats, 2015. "Experimental results on power absorption from a wave energy converter at the Lysekil wave energy research site," Renewable Energy, Elsevier, vol. 77(C), pages 9-14.
    15. Kamranzad, Bahareh & Etemad-Shahidi, Amir & Chegini, Vahid, 2016. "Sustainability of wave energy resources in southern Caspian Sea," Energy, Elsevier, vol. 97(C), pages 549-559.
    16. Acker, Thomas L. & Williams, Susan K. & Duque, Earl P.N. & Brummels, Grant & Buechler, Jason, 2007. "Wind resource assessment in the state of Arizona: Inventory, capacity factor, and cost," Renewable Energy, Elsevier, vol. 32(9), pages 1453-1466.
    17. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    18. López, Iraide & Andreu, Jon & Ceballos, Salvador & Martínez de Alegría, Iñigo & Kortabarria, Iñigo, 2013. "Review of wave energy technologies and the necessary power-equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 413-434.
    19. Mostafaeipour, Ali & Sedaghat, Ahmad & Ghalishooyan, Morteza & Dinpashoh, Yagob & Mirhosseini, Mojtaba & Sefid, Mohammad & Pour-Rezaei, Maryam, 2013. "Evaluation of wind energy potential as a power generation source for electricity production in Binalood, Iran," Renewable Energy, Elsevier, vol. 52(C), pages 222-229.
    20. Bahrami, Mohsen & Abbaszadeh, Payam, 2013. "An overview of renewable energies in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 198-208.
    21. Ghobadian, Barat & Najafi, Gholamhassan & Rahimi, Hadi & Yusaf, T.F., 2009. "Future of renewable energies in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 689-695, April.
    22. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    23. Saeidi, D. & Mirhosseini, M. & Sedaghat, A. & Mostafaeipour, A., 2011. "Feasibility study of wind energy potential in two provinces of Iran: North and South Khorasan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3558-3569.
    24. Esteban, M. Dolores & Diez, J. Javier & López, Jose S. & Negro, Vicente, 2011. "Why offshore wind energy?," Renewable Energy, Elsevier, vol. 36(2), pages 444-450.
    25. Hernández-Escobedo, Q. & Manzano-Agugliaro, F. & Zapata-Sierra, A., 2010. "The wind power of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2830-2840, December.
    26. Kim, Gunwoo & Jeong, Weon Mu & Lee, Kwang Soo & Jun, Kicheon & Lee, Myung Eun, 2011. "Offshore and nearshore wave energy assessment around the Korean Peninsula," Energy, Elsevier, vol. 36(3), pages 1460-1469.
    27. Iglesias, G. & Carballo, R., 2010. "Offshore and inshore wave energy assessment: Asturias (N Spain)," Energy, Elsevier, vol. 35(5), pages 1964-1972.
    28. Hosseini, Seyed Ehsan & Andwari, Amin Mahmoudzadeh & Wahid, Mazlan Abdul & Bagheri, Ghobad, 2013. "A review on green energy potentials in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 533-545.
    29. Bilgili, Mehmet & Ozbek, Arif & Sahin, Besir & Kahraman, Ali, 2015. "An overview of renewable electric power capacity and progress in new technologies in the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 323-334.
    30. Manwell, J.F. & Rogers, A.L. & McGowan, J.G. & Bailey, B.H., 2002. "An offshore wind resource assessment study for New England," Renewable Energy, Elsevier, vol. 27(2), pages 175-187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    2. Ferrari, Francesco & Besio, Giovanni & Cassola, Federico & Mazzino, Andrea, 2020. "Optimized wind and wave energy resource assessment and offshore exploitability in the Mediterranean Sea," Energy, Elsevier, vol. 190(C).
    3. Wu, Chunlei & Luo, Kun & Wang, Qiang & Fan, Jianren, 2022. "A refined wind farm parameterization for the weather research and forecasting model," Applied Energy, Elsevier, vol. 306(PB).
    4. Salvação, N. & Guedes Soares, C., 2018. "Wind resource assessment offshore the Atlantic Iberian coast with the WRF model," Energy, Elsevier, vol. 145(C), pages 276-287.
    5. Lira-Loarca, Andrea & Ferrari, Francesco & Mazzino, Andrea & Besio, Giovanni, 2021. "Future wind and wave energy resources and exploitability in the Mediterranean Sea by 2100," Applied Energy, Elsevier, vol. 302(C).
    6. Florin Onea & Eugen Rusu, 2019. "An Assessment of Wind Energy Potential in the Caspian Sea," Energies, MDPI, vol. 12(13), pages 1-18, July.
    7. Salcedo-Sanz, S. & García-Herrera, R. & Camacho-Gómez, C. & Aybar-Ruíz, A. & Alexandre, E., 2018. "Wind power field reconstruction from a reduced set of representative measuring points," Applied Energy, Elsevier, vol. 228(C), pages 1111-1121.
    8. Yazdi, Hossein & Ghafari, Hamid Reza & Ghassemi, Hassan & He, Guanghua & Karimirad, Madjid, 2023. "Wave power extraction by Multi-Salter's duck WECs arrayed on the floating offshore wind turbine platform," Energy, Elsevier, vol. 278(PA).
    9. Kamranzad, Bahareh & Hadadpour, Sanaz, 2020. "A multi-criteria approach for selection of wave energy converter/location," Energy, Elsevier, vol. 204(C).
    10. Yun, Eunjeong & Hur, Jin, 2021. "Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources," Energy, Elsevier, vol. 223(C).
    11. Shengjin Wang & Hongru Yang & Quoc Bao Pham & Dao Nguyen Khoi & Pham Thi Thao Nhi, 2020. "An Ensemble Framework to Investigate Wind Energy Sustainability Considering Climate Change Impacts," Sustainability, MDPI, vol. 12(3), pages 1-17, January.
    12. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Jung, Christopher & Schindler, Dirk, 2019. "The role of air density in wind energy assessment – A case study from Germany," Energy, Elsevier, vol. 171(C), pages 385-392.
    14. Sedaghat, Ahmad & Hassanzadeh, Arash & Jamali, Jamaloddin & Mostafaeipour, Ali & Chen, Wei-Hsin, 2017. "Determination of rated wind speed for maximum annual energy production of variable speed wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 781-789.
    15. Nie, Bingchuan & Li, Jiachun, 2018. "Technical potential assessment of offshore wind energy over shallow continent shelf along China coast," Renewable Energy, Elsevier, vol. 128(PA), pages 391-399.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    2. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    3. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    4. Morteza Aien & Omid Mahdavi, 2020. "On the Way of Policy Making to Reduce the Reliance of Fossil Fuels: Case Study of Iran," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    5. Fazelpour, Farivar & Soltani, Nima & Soltani, Sina & Rosen, Marc A., 2015. "Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 87-99.
    6. Mostafaeipour, Ali & Jadidi, Mohsen & Mohammadi, Kasra & Sedaghat, Ahmad, 2014. "An analysis of wind energy potential and economic evaluation in Zahedan, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 641-650.
    7. Mostafaeipour, Ali & Sedaghat, Ahmad & Ghalishooyan, Morteza & Dinpashoh, Yagob & Mirhosseini, Mojtaba & Sefid, Mohammad & Pour-Rezaei, Maryam, 2013. "Evaluation of wind energy potential as a power generation source for electricity production in Binalood, Iran," Renewable Energy, Elsevier, vol. 52(C), pages 222-229.
    8. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    9. Pishgar-Komleh, S.H. & Keyhani, A. & Sefeedpari, P., 2015. "Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 313-322.
    10. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    11. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    12. Siyavash Filom & Soheil Radfar & Roozbeh Panahi & Erfan Amini & Mehdi Neshat, 2021. "Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    13. Minaeian, Ali & Sedaghat, Ahmad & Mostafaeipour, Ali & Akbar Alemrajabi, Ali, 2017. "Exploring economy of small communities and households by investing on harnessing wind energy in the province of Sistan-Baluchestan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 835-847.
    14. Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
    15. Saeidi, D. & Mirhosseini, M. & Sedaghat, A. & Mostafaeipour, A., 2011. "Feasibility study of wind energy potential in two provinces of Iran: North and South Khorasan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3558-3569.
    16. Bahrami, Arian & Teimourian, Amir & Okoye, Chiemeka Onyeka & Khosravi, Nima, 2019. "Assessing the feasibility of wind energy as a power source in Turkmenistan; a major opportunity for Central Asia's energy market," Energy, Elsevier, vol. 183(C), pages 415-427.
    17. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    18. Nasrollahi, Sadaf & Kazemi, Aliyeh & Jahangir, Mohammad-Hossein & Aryaee, Sara, 2023. "Selecting suitable wave energy technology for sustainable development, an MCDM approach," Renewable Energy, Elsevier, vol. 202(C), pages 756-772.
    19. Haratian, Mojtaba & Tabibi, Pouya & Sadeghi, Meisam & Vaseghi, Babak & Poustdouz, Amin, 2018. "A renewable energy solution for stand-alone power generation: A case study of KhshU Site-Iran," Renewable Energy, Elsevier, vol. 125(C), pages 926-935.
    20. Oluseyi O. Ajayi & Richard O. Fagbenle & James Katende & Julius M. Ndambuki & David O. Omole & Adekunle A. Badejo, 2014. "Wind Energy Study and Energy Cost of Wind Electricity Generation in Nigeria: Past and Recent Results and a Case Study for South West Nigeria," Energies, MDPI, vol. 7(12), pages 1-27, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:120:y:2017:i:c:p:332-345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.