IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v115y2016ip1p1305-1319.html
   My bibliography  Save this article

Thermal analysis of a light-duty CI engine operating with diesel-gasoline dual-fuel combustion mode

Author

Listed:
  • Martín, Jaime
  • Novella, Ricardo
  • García, Antonio
  • Carreño, Ricardo
  • Heuser, Benedikt
  • Kremer, Florian
  • Pischinger, Stefan

Abstract

Reactivity Controlled Compression Ignition (RCCI) is one of the most promising premixed combustion modes, aimed at reducing simultaneously engine emissions and fuel consumption. In this work, the global energy balance (GEB) of a single-cylinder engine operating with dual-fuel and RCCI modes is analysed. The methodology used allows determining the energy degradation from the energy release during the combustion to the final work output, thus evaluating the performance of such combustion mode. The weight of each GEB term is analysed using two references: the injected and the burned fuel energies, thus decoupling the combustion and thermal processes. The analysis is performed by evaluating the effect of some key parameters: low/high reactivity fuel ratio, injection timing and EGR rate. The results show that increasing the low reactivity fuel leads to a better shape of the heat release rate, with a reduction of heat transfer and exhaust losses, thus improving the thermal efficiency about 1% with respect to a conventional Diesel combustion. Injection timing swept shows that a suitable optimization leads to further thermal efficiency increase up to 4%, while EGR has a limited effect. It is also concluded that there is still room for further improvement by reducing incomplete combustion losses.

Suggested Citation

  • Martín, Jaime & Novella, Ricardo & García, Antonio & Carreño, Ricardo & Heuser, Benedikt & Kremer, Florian & Pischinger, Stefan, 2016. "Thermal analysis of a light-duty CI engine operating with diesel-gasoline dual-fuel combustion mode," Energy, Elsevier, vol. 115(P1), pages 1305-1319.
  • Handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:1305-1319
    DOI: 10.1016/j.energy.2016.09.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216312622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.09.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Desantes, José M. & Benajes, Jesús & García, Antonio & Monsalve-Serrano, Javier, 2014. "The role of the in-cylinder gas temperature and oxygen concentration over low load reactivity controlled compression ignition combustion efficiency," Energy, Elsevier, vol. 78(C), pages 854-868.
    2. Olmeda, Pablo & Martín, Jaime & Novella, Ricardo & Carreño, Ricardo, 2015. "An adapted heat transfer model for engines with tumble motion," Applied Energy, Elsevier, vol. 158(C), pages 190-202.
    3. Benajes, Jesús & Molina, Santiago & García, Antonio & Monsalve-Serrano, Javier, 2015. "Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine," Energy, Elsevier, vol. 90(P2), pages 1261-1271.
    4. Sher, E. & Bar-Kohany, T., 2002. "Optimization of variable valve timing for maximizing performance of an unthrottled SI engine—a theoretical study," Energy, Elsevier, vol. 27(8), pages 757-775.
    5. Magno, Agnese & Mancaruso, Ezio & Vaglieco, Bianca Maria, 2015. "Effects of both blended and pure biodiesel on waste heat recovery potentiality and exhaust emissions of a small CI (compression ignition) engine," Energy, Elsevier, vol. 86(C), pages 661-671.
    6. Mohan, Balaji & Yang, Wenming & Chou, Siaw kiang, 2013. "Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 664-676.
    7. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    8. Karavalakis, Georgios & Short, Daniel & Vu, Diep & Russell, Robert L. & Asa-Awuku, Akua & Jung, Heejung & Johnson, Kent C. & Durbin, Thomas D., 2015. "The impact of ethanol and iso-butanol blends on gaseous and particulate emissions from two passenger cars equipped with spray-guided and wall-guided direct injection SI (spark ignition) engines," Energy, Elsevier, vol. 82(C), pages 168-179.
    9. Jaichandar, S. & Annamalai, K., 2013. "Combined impact of injection pressure and combustion chamber geometry on the performance of a biodiesel fueled diesel engine," Energy, Elsevier, vol. 55(C), pages 330-339.
    10. Bermúdez, Vicente & Luján, José Manuel & Piqueras, Pedro & Campos, Daniel, 2014. "Pollutants emission and particle behavior in a pre-turbo aftertreatment light-duty diesel engine," Energy, Elsevier, vol. 66(C), pages 509-522.
    11. Verschaeren, Roel & Schaepdryver, Wouter & Serruys, Thomas & Bastiaen, Marc & Vervaeke, Lieven & Verhelst, Sebastian, 2014. "Experimental study of NOx reduction on a medium speed heavy duty diesel engine by the application of EGR (exhaust gas recirculation) and Miller timing," Energy, Elsevier, vol. 76(C), pages 614-621.
    12. Taymaz, Imdat, 2006. "An experimental study of energy balance in low heat rejection diesel engine," Energy, Elsevier, vol. 31(2), pages 364-371.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tongroon, Manida & Chuepeng, Sathaporn, 2022. "Adjacent combustion heat release and emissions over various load ranges in a premixed direct injection diesel engine: A comparison between gasoline and ethanol port injection," Energy, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Payri, Francisco & López, José Javier & Martín, Jaime & Carreño, Ricardo, 2018. "Improvement and application of a methodology to perform the Global Energy Balance in internal combustion engines. Part 1: Global Energy Balance tool development and calibration," Energy, Elsevier, vol. 152(C), pages 666-681.
    2. Wang, Yifeng & Yao, Mingfa & Li, Tie & Zhang, Weijing & Zheng, Zunqing, 2016. "A parametric study for enabling reactivity controlled compression ignition (RCCI) operation in diesel engines at various engine loads," Applied Energy, Elsevier, vol. 175(C), pages 389-402.
    3. Pedrozo, Vinícius B. & May, Ian & Dalla Nora, Macklini & Cairns, Alasdair & Zhao, Hua, 2016. "Experimental analysis of ethanol dual-fuel combustion in a heavy-duty diesel engine: An optimisation at low load," Applied Energy, Elsevier, vol. 165(C), pages 166-182.
    4. Jin, Tai & Wu, Yunchao & Wang, Xujiang & Luo, Kai H. & Lu, Tianfeng & Luo, Kun & Fan, Jianren, 2019. "Ignition dynamics of DME/methane-air reactive mixing layer under reactivity controlled compression ignition conditions: Effects of cool flames," Applied Energy, Elsevier, vol. 249(C), pages 343-354.
    5. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Luján, José Manuel & Bermúdez, Vicente & Piqueras, Pedro & García-Afonso, Óscar, 2015. "Experimental assessment of pre-turbo aftertreatment configurations in a single stage turbocharged diesel engine. Part 1: Steady-state operation," Energy, Elsevier, vol. 80(C), pages 599-613.
    7. Han, Weiqiang & Li, Bolun & Pan, Suozhu & Lu, Yao & Li, Xin, 2018. "Combined effect of inlet pressure, total cycle energy, and start of injection on low load reactivity controlled compression ignition combustion and emission characteristics in a multi-cylinder heavy-d," Energy, Elsevier, vol. 165(PB), pages 846-858.
    8. Li, Xiangrong & Gao, Haobu & Zhao, Luming & Zhang, Zheng & He, Xu & Liu, Fushui, 2016. "Combustion and emission performance of a split injection diesel engine in a double swirl combustion system," Energy, Elsevier, vol. 114(C), pages 1135-1146.
    9. Dong, Guangyu & Morgan, Robert E. & Heikal, Morgan R., 2016. "Thermodynamic analysis and system design of a novel split cycle engine concept," Energy, Elsevier, vol. 102(C), pages 576-585.
    10. Qian, Yejian & Gong, Zhen & Zhuang, Yuan & Wang, Chunmei & Zhao, Peng, 2018. "Mechanism study of scavenging process and its effect on combustion characteristics in a boosted GDI engine," Energy, Elsevier, vol. 165(PA), pages 246-266.
    11. Huang, Yuhan & Hong, Guang & Huang, Ronghua, 2016. "Effect of injection timing on mixture formation and combustion in an ethanol direct injection plus gasoline port injection (EDI+GPI) engine," Energy, Elsevier, vol. 111(C), pages 92-103.
    12. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N. & Hiremath, S.S., 2017. "Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 369-384.
    13. Benajes, Jesús & Olmeda, Pablo & Martín, Jaime & Blanco-Cavero, Diego & Warey, Alok, 2017. "Evaluation of swirl effect on the Global Energy Balance of a HSDI Diesel engine," Energy, Elsevier, vol. 122(C), pages 168-181.
    14. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    16. Jagtap, Sharad P. & Pawar, Anand N. & Lahane, Subhash, 2020. "Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis," Renewable Energy, Elsevier, vol. 155(C), pages 628-644.
    17. Santhoshkumar, A. & Ramanathan, Anand, 2020. "Recycling of waste engine oil through pyrolysis process for the production of diesel like fuel and its uses in diesel engine," Energy, Elsevier, vol. 197(C).
    18. Masurier, J.-B. & Foucher, F. & Dayma, G. & Dagaut, P., 2015. "Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion," Applied Energy, Elsevier, vol. 160(C), pages 566-580.
    19. Yao, Mingfa & Ma, Tianyu & Wang, Hu & Zheng, Zunqing & Liu, Haifeng & Zhang, Yan, 2018. "A theoretical study on the effects of thermal barrier coating on diesel engine combustion and emission characteristics," Energy, Elsevier, vol. 162(C), pages 744-752.
    20. Lei Zhang & Tiexiong Su & Yangang Zhang & Fukang Ma & Jinguan Yin & Yaonan Feng, 2017. "Numerical Investigation of the Effects of Split Injection Strategies on Combustion and Emission in an Opposed-Piston, Opposed-Cylinder (OPOC) Two-Stroke Diesel Engine," Energies, MDPI, vol. 10(5), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:1305-1319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.