IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v108y2016icp41-49.html
   My bibliography  Save this article

Gap analysis of industrial energy management systems in Slovenia

Author

Listed:
  • Pusnik, Matevz
  • Al-Mansour, Fouad
  • Sucic, Boris
  • Gubina, A.F.

Abstract

Industrial energy management systems, which comprise software solutions, upfront services, and ongoing monitoring and management, enable industrial companies to actively manage their energy consumption and energy procurement activities. Energy management systems are usually tailored to the specific industrial needs but may offer limited functionalities, mostly as a result of different identified gaps (process simplifications, improper measurement points, a lack of motivation, etc.). A survey was conducted in order to analyse the gaps and use of energy management systems in Slovenian industry. The results of the survey presented in this paper demonstrate that the use of energy management systems in industry is recognised as a potential competitive advantage by most of the addressed companies. Furthermore, motivation was highlighted as an important prerequisite for process and structural improvements and reported to be thus far insufficiently addressed. Furthermore, the importance of strong cooperation with actors at different levels of industry, namely the executive and shop floor levels, is addressed. In the conclusion, possibilities for new opportunities in the exploitation of energy efficiency through the use of industrial energy management systems are discussed.

Suggested Citation

  • Pusnik, Matevz & Al-Mansour, Fouad & Sucic, Boris & Gubina, A.F., 2016. "Gap analysis of industrial energy management systems in Slovenia," Energy, Elsevier, vol. 108(C), pages 41-49.
  • Handle: RePEc:eee:energy:v:108:y:2016:i:c:p:41-49
    DOI: 10.1016/j.energy.2015.10.141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215015261
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.10.141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ates, Seyithan Ahmet & Durakbasa, Numan M., 2012. "Evaluation of corporate energy management practices of energy intensive industries in Turkey," Energy, Elsevier, vol. 45(1), pages 81-91.
    2. Jafarzadeh, Sepideh & Utne, Ingrid Bouwer, 2014. "A framework to bridge the energy efficiency gap in shipping," Energy, Elsevier, vol. 69(C), pages 603-612.
    3. Nagesha, N. & Balachandra, P., 2006. "Barriers to energy efficiency in small industry clusters: Multi-criteria-based prioritization using the analytic hierarchy process," Energy, Elsevier, vol. 31(12), pages 1969-1983.
    4. Backlund, Sandra & Thollander, Patrik, 2015. "Impact after three years of the Swedish energy audit program," Energy, Elsevier, vol. 82(C), pages 54-60.
    5. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    6. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    7. Jouhara, Hussam & Meskimmon, Richard, 2014. "Heat pipe based thermal management systems for energy-efficient data centres," Energy, Elsevier, vol. 77(C), pages 265-270.
    8. Cagno, Enrico & Ramirez-Portilla, Andres & Trianni, Andrea, 2015. "Linking energy efficiency and innovation practices: Empirical evidence from the foundry sector," Energy Policy, Elsevier, vol. 83(C), pages 240-256.
    9. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    10. Lin, Hsin-Chiu & Chan, David Yih-Liang & Lin, Wei-Chun & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2014. "Status of energy conservation in Taiwan's pulp and paper industry," Energy, Elsevier, vol. 73(C), pages 680-685.
    11. Numbi, B.P. & Xia, X., 2015. "Systems optimization model for energy management of a parallel HPGR crushing process," Applied Energy, Elsevier, vol. 149(C), pages 133-147.
    12. Blass, Vered & Corbett, Charles J. & Delmas, Magali A. & Muthulingam, Suresh, 2014. "Top management and the adoption of energy efficiency practices: Evidence from small and medium-sized manufacturing firms in the US," Energy, Elsevier, vol. 65(C), pages 560-571.
    13. Rudberg, Martin & Waldemarsson, Martin & Lidestam, Helene, 2013. "Strategic perspectives on energy management: A case study in the process industry," Applied Energy, Elsevier, vol. 104(C), pages 487-496.
    14. Soares, Ana & Antunes, Carlos Henggeler & Oliveira, Carlos & Gomes, Álvaro, 2014. "A multi-objective genetic approach to domestic load scheduling in an energy management system," Energy, Elsevier, vol. 77(C), pages 144-152.
    15. Madlool, N.A. & Saidur, R. & Rahim, N.A. & Kamalisarvestani, M., 2013. "An overview of energy savings measures for cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 18-29.
    16. Ansari, Nastaran & Seifi, Abbas, 2013. "A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios," Energy Policy, Elsevier, vol. 58(C), pages 75-89.
    17. Russo, D. & Dassisti, M. & Lawlor, V. & Olabi, A.G., 2012. "State of the art of biofuels from pure plant oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4056-4070.
    18. Chontanawat, Jaruwan & Wiboonchutikula, Paitoon & Buddhivanich, Atinat, 2014. "Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand," Energy, Elsevier, vol. 77(C), pages 171-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lavrič, Henrik & Rihar, Andraž & Fišer, Rastko, 2018. "Simulation of electrical energy production in Archimedes screw-based ultra-low head small hydropower plant considering environment protection conditions and technical limitations," Energy, Elsevier, vol. 164(C), pages 87-98.
    2. Kelly M. Smith & Stephen Wilson & Paul Lant & Maureen E. Hassall, 2022. "How Do We Learn about Drivers for Industrial Energy Efficiency—Current State of Knowledge," Energies, MDPI, vol. 15(7), pages 1-26, April.
    3. Danish Mahmood & Nadeem Javaid & Sheraz Ahmed & Imran Ahmed & Iftikhar Azim Niaz & Wadood Abdul & Sanaa Ghouzali, 2017. "Orchestrating an Effective Formulation to Investigate the Impact of EMSs (Energy Management Systems) for Residential Units Prior to Installation," Energies, MDPI, vol. 10(3), pages 1-25, March.
    4. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    5. Monika Górska & Marta Daroń, 2021. "Importance of Machine Modernization in Energy Efficiency Management of Manufacturing Companies," Energies, MDPI, vol. 14(24), pages 1-19, December.
    6. Julio R. G mez Sarduy & Percy R. Viego Felipe & Yamile D az Torres & Mario A. lvarez-Guerra Plascencia & Vladimir Sousa Santos & Dries Haeseldonckx, 2018. "A New Energy Performance Indicator for Energy Management System of a Wheat Mill Plant," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 324-330.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sucic, Boris & Al-Mansour, Fouad & Pusnik, Matevz & Vuk, Tomaz, 2016. "Context sensitive production planning and energy management approach in energy intensive industries," Energy, Elsevier, vol. 108(C), pages 63-73.
    2. Herrera, Bernardo & Amell, Andrés & Chejne, Farid & Cacua, Karen & Manrique, Raiza & Henao, Wilson & Vallejo, Gabriel, 2017. "Use of thermal energy and analysis of barriers to the implementation of thermal efficiency measures in cement production: Exploratory study in Colombia," Energy, Elsevier, vol. 140(P1), pages 1047-1058.
    3. Solnørdal, Mette Talseth & Thyholdt, Sverre Braathen, 2019. "Absorptive capacity and energy efficiency in manufacturing firms – An empirical analysis in Norway," Energy Policy, Elsevier, vol. 132(C), pages 978-990.
    4. Marlene Preiß, 2021. "Treiber und Hemmnisse betrieblicher Effizienzmaßnahmen – Vernetzung als Erfolgsfaktor [Drivers and barriers of operational efficiency measures—networking as a success factor]," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 29(2), pages 93-106, June.
    5. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    6. Ringel, Marc & Schlomann, Barbara & Krail, Michael & Rohde, Clemens, 2016. "Towards a green economy in Germany? The role of energy efficiency policies," Applied Energy, Elsevier, vol. 179(C), pages 1293-1303.
    7. Hasan, A S M Monjurul & Tuhin, Rashedul Amin & Ullah, Mahfuz & Sakib, Taiyeb Hasan & Thollander, Patrik & Trianni, Andrea, 2021. "A comprehensive investigation of energy management practices within energy intensive industries in Bangladesh," Energy, Elsevier, vol. 232(C).
    8. Elena Stefana & Paola Cocca & Filippo Marciano & Diana Rossi & Giuseppe Tomasoni, 2019. "A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    9. Joakim Haraldsson & Maria T. Johansson, 2019. "Barriers to and Drivers for Improved Energy Efficiency in the Swedish Aluminium Industry and Aluminium Casting Foundries," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    10. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    11. Trianni, Andrea & Cagno, Enrico & Bertolotti, Matteo & Thollander, Patrik & Andersson, Elias, 2019. "Energy management: A practice-based assessment model," Applied Energy, Elsevier, vol. 235(C), pages 1614-1636.
    12. Kelly M. Smith & Stephen Wilson & Paul Lant & Maureen E. Hassall, 2022. "How Do We Learn about Drivers for Industrial Energy Efficiency—Current State of Knowledge," Energies, MDPI, vol. 15(7), pages 1-26, April.
    13. Zhang, Yixiang & Wei, Yimin & Zhou, Guanghui, 2018. "Promoting firms’ energy-saving behavior: The role of institutional pressures, top management support and financial slack," Energy Policy, Elsevier, vol. 115(C), pages 230-238.
    14. Noor Jalo & Ida Johansson & Mariana Andrei & Therese Nehler & Patrik Thollander, 2021. "Barriers to and Drivers of Energy Management in Swedish SMEs," Energies, MDPI, vol. 14(21), pages 1-21, October.
    15. May, Gökan & Stahl, Bojan & Taisch, Marco, 2016. "Energy management in manufacturing: Toward eco-factories of the future – A focus group study," Applied Energy, Elsevier, vol. 164(C), pages 628-638.
    16. Naghmeh Taghavi, 2021. "Sustainable Development of Operations: Actors’ Involvement in the Process of Energy Efficiency Improvements," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    17. Mette Talseth Solnørdal & Elin Anita Nilsen, 2020. "From Program to Practice: Translating Energy Management in a Manufacturing Firm," Sustainability, MDPI, vol. 12(23), pages 1-24, December.
    18. Akvile Lawrence & Patrik Thollander & Magnus Karlsson, 2018. "Drivers, Barriers, and Success Factors for Improving Energy Management in the Pulp and Paper Industry," Sustainability, MDPI, vol. 10(6), pages 1-35, June.
    19. Zhang, Yixiang & Zhou, Weiyi & Liu, Meiling, 2022. "Driving factors of enterprise energy-saving and emission reduction behaviors," Energy, Elsevier, vol. 256(C).
    20. Fernando, Yudi & Bee, Poh Swan & Jabbour, Charbel Jose Chiappetta & Thomé, Antônio Márcio Tavares, 2018. "Understanding the effects of energy management practices on renewable energy supply chains: Implications for energy policy in emerging economies," Energy Policy, Elsevier, vol. 118(C), pages 418-428.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:108:y:2016:i:c:p:41-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.