IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v99y2016icp42-56.html
   My bibliography  Save this article

A supporting method for selecting cost-optimal energy retrofit policies for residential buildings at the urban scale

Author

Listed:
  • Delmastro, Chiara
  • Mutani, Guglielmina
  • Corgnati, Stefano Paolo

Abstract

Nowadays, in Europe, the main challenge is not only the construction of new high performing buildings, but also the promotion of proper retrofit actions on existing buildings. In the on-going transition towards low carbon cities, tools to support local municipalities are fundamental.

Suggested Citation

  • Delmastro, Chiara & Mutani, Guglielmina & Corgnati, Stefano Paolo, 2016. "A supporting method for selecting cost-optimal energy retrofit policies for residential buildings at the urban scale," Energy Policy, Elsevier, vol. 99(C), pages 42-56.
  • Handle: RePEc:eee:enepol:v:99:y:2016:i:c:p:42-56
    DOI: 10.1016/j.enpol.2016.09.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516305158
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.09.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    2. Fabbri, Kristian, 2015. "Building and fuel poverty, an index to measure fuel poverty: An Italian case study," Energy, Elsevier, vol. 89(C), pages 244-258.
    3. Caputo, Paola & Costa, Gaia & Ferrari, Simone, 2013. "A supporting method for defining energy strategies in the building sector at urban scale," Energy Policy, Elsevier, vol. 55(C), pages 261-270.
    4. Corgnati, Stefano Paolo & Fabrizio, Enrico & Filippi, Marco & Monetti, Valentina, 2013. "Reference buildings for cost optimal analysis: Method of definition and application," Applied Energy, Elsevier, vol. 102(C), pages 983-993.
    5. Pisello, Anna Laura & Asdrubali, Francesco, 2014. "Human-based energy retrofits in residential buildings: A cost-effective alternative to traditional physical strategies," Applied Energy, Elsevier, vol. 133(C), pages 224-235.
    6. Theodoridou, Ifigeneia & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "A feasibility evaluation tool for sustainable cities – A case study for Greece," Energy Policy, Elsevier, vol. 44(C), pages 207-216.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimiliano Manfren & Maurizio Sibilla & Lamberto Tronchin, 2021. "Energy Modelling and Analytics in the Built Environment—A Review of Their Role for Energy Transitions in the Construction Sector," Energies, MDPI, vol. 14(3), pages 1-29, January.
    2. Hao Cheng & Xinke Wang & Min Zhou, 2017. "Optimized Design and Feasibility of a Heating System with Energy Storage by Pebble Bed in a Solar Attic," Energies, MDPI, vol. 10(3), pages 1-14, March.
    3. Tharindu Prabatha & Kasun Hewage & Rehan Sadiq, 2023. "An Incentives Planning Framework for Residential Energy Retrofits: A Life Cycle Thinking-Based Analysis under Uncertainty," Sustainability, MDPI, vol. 15(6), pages 1-29, March.
    4. Delmastro, Chiara & Gargiulo, Maurizio, 2020. "Capturing the long-term interdependencies between building thermal energy supply and demand in urban planning strategies," Applied Energy, Elsevier, vol. 268(C).
    5. Hettinga, Sanne & Nijkamp, Peter & Scholten, Henk, 2018. "A multi-stakeholder decision support system for local neighbourhood energy planning," Energy Policy, Elsevier, vol. 116(C), pages 277-288.
    6. Hettinga, Sanne & Boter, Jaap & Dias, Eduardo & Fruijtier, Steven & de Vogel, Brian & Scholten, Henk, 2021. "Urban energy transition in a gaming context: The role of children," Land Use Policy, Elsevier, vol. 111(C).
    7. Pagliaro, Francesca & Hugony, Francesca & Zanghirella, Fabio & Basili, Rossano & Misceo, Monica & Colasuonno, Luca & Del Fatto, Vincenzo, 2021. "Assessing building energy performance and energy policy impact through the combined analysis of EPC data – The Italian case study of SIAPE," Energy Policy, Elsevier, vol. 159(C).
    8. José Sánchez Ramos & MCarmen Guerrero Delgado & Servando Álvarez Domínguez & José Luis Molina Félix & Francisco José Sánchez de la Flor & José Antonio Tenorio Ríos, 2019. "Systematic Simplified Simulation Methodology for Deep Energy Retrofitting Towards Nze Targets Using Life Cycle Energy Assessment," Energies, MDPI, vol. 12(16), pages 1-27, August.
    9. Baldoni, Edoardo & Coderoni, Silvia & D'Orazio, Marco & Di Giuseppe, Elisa & Esposti, Roberto, 2019. "The role of economic and policy variables in energy-efficient retrofitting assessment. A stochastic Life Cycle Costing methodology," Energy Policy, Elsevier, vol. 129(C), pages 1207-1219.
    10. Cesare Biserni & Paolo Valdiserri & Dario D’Orazio & Massimo Garai, 2018. "Energy Retrofitting Strategies and Economic Assessments: The Case Study of a Residential Complex Using Utility Bills," Energies, MDPI, vol. 11(8), pages 1-15, August.
    11. Delmastro, C. & Martinsson, F. & Dulac, J. & Corgnati, S.P., 2017. "Sustainable urban heat strategies: Perspectives from integrated district energy choices and energy conservation in buildings. Case studies in Torino and Stockholm," Energy, Elsevier, vol. 138(C), pages 1209-1220.
    12. Ali, Usman & Shamsi, Mohammad Haris & Bohacek, Mark & Hoare, Cathal & Purcell, Karl & Mangina, Eleni & O’Donnell, James, 2020. "A data-driven approach to optimize urban scale energy retrofit decisions for residential buildings," Applied Energy, Elsevier, vol. 267(C).
    13. Karásek, Jiří & Pojar, Jan & Kaločai, Ladislav & Heralová, Renáta Schneiderová, 2018. "Cost optimum calculation of energy efficiency measures in the Czech Republic," Energy Policy, Elsevier, vol. 123(C), pages 155-166.
    14. Riccardo Camboni & Alberto Corsini & Raffaele Miniaci & Paola Valbonesi, 2023. "CO2 emissions reduction from residential buildings: cost estimate and policy design," "Marco Fanno" Working Papers 0304, Dipartimento di Scienze Economiche "Marco Fanno".
    15. Alex Gonzalez Caceres, 2018. "Shortcomings and Suggestions to the EPC Recommendation List of Measures: In-Depth Interviews in Six Countries," Energies, MDPI, vol. 11(10), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    2. Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
    3. Di Turi, Silvia & Stefanizzi, Pietro, 2015. "Energy analysis and refurbishment proposals for public housing in the city of Bari, Italy," Energy Policy, Elsevier, vol. 79(C), pages 58-71.
    4. Buso, Tiziana & Corgnati, Stefano Paolo, 2017. "A customized modelling approach for multi-functional buildings – Application to an Italian Reference Hotel," Applied Energy, Elsevier, vol. 190(C), pages 1302-1315.
    5. Jacopo Gaspari & Michaela De Giglio & Ernesto Antonini & Vincenzo Vodola, 2020. "A GIS-Based Methodology for Speedy Energy Efficiency Mapping: A Case Study in Bologna," Energies, MDPI, vol. 13(9), pages 1-19, May.
    6. Galatioto, A. & Ciulla, G. & Ricciu, R., 2017. "An overview of energy retrofit actions feasibility on Italian historical buildings," Energy, Elsevier, vol. 137(C), pages 991-1000.
    7. Hanan S.S. Ibrahim & Ahmed Z. Khan & Shady Attia & Yehya Serag, 2021. "Classification of Heritage Residential Building Stock and Defining Sustainable Retrofitting Scenarios in Khedivial Cairo," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
    8. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.
    9. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    10. Younghoon Kwak & Jeong-A Kang & Jung-Ho Huh & Tae-Hyoung Kim & Young-Sun Jeong, 2019. "An Analysis of the Effectiveness of Greenhouse Gas Reduction Policy for Office Building Design in South Korea," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    11. D'Agostino, D. & Parker, D. & Epifani, I. & Crawley, D. & Lawrie, L., 2022. "How will future climate impact the design and performance of nearly zero energy buildings (NZEBs)?," Energy, Elsevier, vol. 240(C).
    12. Pagliaro, Francesca & Hugony, Francesca & Zanghirella, Fabio & Basili, Rossano & Misceo, Monica & Colasuonno, Luca & Del Fatto, Vincenzo, 2021. "Assessing building energy performance and energy policy impact through the combined analysis of EPC data – The Italian case study of SIAPE," Energy Policy, Elsevier, vol. 159(C).
    13. Robert C. Vella & Francisco Javier Rey Martinez & Charles Yousif & Liberato Camilleri, 2021. "Thermal Comfort in Places of Worship within a Mediterranean Climate," Sustainability, MDPI, vol. 13(13), pages 1-26, June.
    14. Ilaria Ballarini & Vincenzo Corrado, 2017. "A New Methodology for Assessing the Energy Consumption of Building Stocks," Energies, MDPI, vol. 10(8), pages 1-22, July.
    15. Attia, Shady & Shadmanfar, Niloufar & Ricci, Federico, 2020. "Developing two benchmark models for nearly zero energy schools," Applied Energy, Elsevier, vol. 263(C).
    16. Krarti, Moncef & Aldubyan, Mohammad & Williams, Eric, 2020. "Residential building stock model for evaluating energy retrofit programs in Saudi Arabia," Energy, Elsevier, vol. 195(C).
    17. Niall Buckley & Gerald Mills & Samuel Letellier-Duchesne & Khadija Benis, 2021. "Designing an Energy-Resilient Neighbourhood Using an Urban Building Energy Model," Energies, MDPI, vol. 14(15), pages 1-17, July.
    18. Congedo, Paolo Maria & Baglivo, Cristina & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal design for nearly zero energy office buildings located in warm climates," Energy, Elsevier, vol. 91(C), pages 967-982.
    19. Gatt, Damien & Yousif, Charles & Cellura, Maurizio & Camilleri, Liberato & Guarino, Francesco, 2020. "Assessment of building energy modelling studies to meet the requirements of the new Energy Performance of Buildings Directive," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    20. Bischof, Julian & Duffy, Aidan, 2022. "Life-cycle assessment of non-domestic building stocks: A meta-analysis of current modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:99:y:2016:i:c:p:42-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.