IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v42y2012icp201-212.html
   My bibliography  Save this article

The carbon footprint of water management policy options

Author

Listed:
  • Shrestha, Eleeja
  • Ahmad, Sajjad
  • Johnson, Walter
  • Batista, Jacimaria R.

Abstract

The growing concerns of global warming and climate change have forced water providers to scrutinize the energy for water production and the greenhouse gas (GHG) emissions associated with it. A system dynamics model is developed to estimate the energy requirements to move water from the water source to the distribution laterals of the Las Vegas Valley and to analyze the carbon footprint associated with it. The results show that at present nearly 0.85 million megawatt hours per year (MWh/y) energy is required for conveyance of water in distribution laterals of the Valley from Lake Mead resulting in approximately 0.53 million metric tons of CO2 emissions per year. Considering the current mix of fuel source, the energy and CO2 emissions will increase to 1.34millionMWh/y and 0.84 million metric tons per year, respectively, by the year 2035. Various scenarios including change in population growth rate, water conservation, increase in water reuse, change in the Lake level, change in fuel sources, change in emission rates, and combination of multiple scenarios are analyzed to study their impact on energy requirements and associated CO2 emissions.

Suggested Citation

  • Shrestha, Eleeja & Ahmad, Sajjad & Johnson, Walter & Batista, Jacimaria R., 2012. "The carbon footprint of water management policy options," Energy Policy, Elsevier, vol. 42(C), pages 201-212.
  • Handle: RePEc:eee:enepol:v:42:y:2012:i:c:p:201-212
    DOI: 10.1016/j.enpol.2011.11.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511009724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.11.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sajjad Ahmad & Slobodan Simonovic, 2006. "An Intelligent Decision Support System for Management of Floods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(3), pages 391-410, June.
    2. Sajjad Ahmad & Dinesh Prashar, 2010. "Evaluating Municipal Water Conservation Policies Using a Dynamic Simulation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3371-3395, October.
    3. Ines Winz & Gary Brierley & Sam Trowsdale, 2009. "The Use of System Dynamics Simulation in Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1301-1323, May.
    4. Jesús Gastélum & Juan Valdés & Steven Stewart, 2010. "A System Dynamics Model to Evaluate Temporary Water Transfers in the Mexican Conchos Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1285-1311, May.
    5. Slobodan Simonovic & Sajjad Ahmad, 2005. "Computer-based Model for Flood Evacuation Emergency Planning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 34(1), pages 25-51, January.
    6. S. Mosquera-Machado & Sajjad Ahmad, 2007. "Flood hazard assessment of Atrato River in Colombia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 591-609, March.
    7. Neeraj Vedwan & Sajjad Ahmad & Fernando Miralles-Wilhelm & Kenneth Broad & David Letson & Guillermo Podesta, 2008. "Institutional Evolution in Lake Okeechobee Management in Florida: Characteristics, Impacts, and Limitations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(6), pages 699-718, June.
    8. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    9. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    10. Eltawil, Mohamed A. & Zhengming, Zhao & Yuan, Liqiang, 2009. "A review of renewable energy technologies integrated with desalination systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2245-2262, December.
    11. Rio Carrillo, Anna Mercè & Frei, Christoph, 2009. "Water: A key resource in energy production," Energy Policy, Elsevier, vol. 37(11), pages 4303-4312, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    2. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2015. "Exploring the water-energy nexus in Brazil: The electricity use for water supply," Energy, Elsevier, vol. 85(C), pages 415-432.
    3. Thomas Beaussier & Sylvain Caurla & Véronique Bellon Maurel & Eléonore Loiseau, 2019. "Coupling economic models and environmental assessment methods to support regional policies : A critical review," Post-Print hal-02021423, HAL.
    4. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    5. Zhang, Xiaohong & Qi, Yan & Wang, Yanqing & Wu, Jun & Lin, Lili & Peng, Hong & Qi, Hui & Yu, Xiaoyu & Zhang, Yanzong, 2016. "Effect of the tap water supply system on China's economy and energy consumption, and its emissions’ impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 660-671.
    6. Bekker, A. & Van Dijk, M. & Niebuhr, C.M., 2022. "A review of low head hydropower at wastewater treatment works and development of an evaluation framework for South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Bukhary, Saria & Ahmad, Sajjad & Batista, Jacimaria, 2018. "Analyzing land and water requirements for solar deployment in the Southwestern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3288-3305.
    8. Riccardo Boiocchi & Marco Ragazzi & Vincenzo Torretta & Elena Cristina Rada, 2023. "Critical Analysis of the GreenMetric World University Ranking System: The Issue of Comparability," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    9. Ali Mirchi & Kaveh Madani & David Watkins & Sajjad Ahmad, 2012. "Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2421-2442, July.
    10. Christopher A. Scott & Zachary P. Sugg, 2015. "Global Energy Development and Climate-Induced Water Scarcity—Physical Limits, Sectoral Constraints, and Policy Imperatives," Energies, MDPI, vol. 8(8), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    2. Sajjad Ahmad & Dinesh Prashar, 2010. "Evaluating Municipal Water Conservation Policies Using a Dynamic Simulation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3371-3395, October.
    3. Elmira Hassanzadeh & Mahdi Zarghami & Yousef Hassanzadeh, 2012. "Determining the Main Factors in Declining the Urmia Lake Level by Using System Dynamics Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 129-145, January.
    4. Maryam Ghashghaei & Ali Bagheri & Saeed Morid, 2013. "Rainfall-runoff Modeling in a Watershed Scale Using an Object Oriented Approach Based on the Concepts of System Dynamics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5119-5141, December.
    5. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Abdolrahim Salavitabar & Erfan Goharian, 2021. "Developing a sustainability assessment framework for integrated management of water resources systems using distributed zoning and system dynamics approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16246-16282, November.
    6. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    7. Ali Mirchi & Kaveh Madani & David Watkins & Sajjad Ahmad, 2012. "Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2421-2442, July.
    8. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    9. Jesus R. Gastelum & Ganesh Krishnamurthy & Nemesciano Ochoa & Shane Sibbett & Margie Armstrong & Parag Kalaria, 2018. "The Use of System Dynamics Model to Enhance Integrated Resources Planning Implementation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2247-2260, May.
    10. Prehoda, Emily W. & Pearce, Joshua M., 2017. "Potential lives saved by replacing coal with solar photovoltaic electricity production in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 710-715.
    11. Gude, Veera Gnaneswar, 2016. "Geothermal source potential for water desalination – Current status and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1038-1065.
    12. S. Mosquera-Machado & Sajjad Ahmad, 2007. "Flood hazard assessment of Atrato River in Colombia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 591-609, March.
    13. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    14. Dries Haeseldonckx & William D’haeseleer, 2010. "Hydrogen from Renewables," Chapters, in: François Lévêque & Jean-Michel Glachant & Julián Barquín & Christian von Hirschhausen & Franziska Ho (ed.), Security of Energy Supply in Europe, chapter 10, Edward Elgar Publishing.
    15. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    16. Shang, Yizi & Hei, Pengfei & Lu, Shibao & Shang, Ling & Li, Xiaofei & Wei, Yongping & Jia, Dongdong & Jiang, Dong & Ye, Yuntao & Gong, Jiaguo & Lei, Xiaohui & Hao, Mengmeng & Qiu, Yaqin & Liu, Jiahong, 2018. "China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050," Applied Energy, Elsevier, vol. 210(C), pages 643-660.
    17. D. Nagesh Kumar & Falguni Baliarsingh & K. Srinivasa Raju, 2010. "Optimal Reservoir Operation for Flood Control Using Folded Dynamic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1045-1064, April.
    18. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Yusta-Loyo, José M. & Domínguez-Navarro, José A. & Ramírez-Rosado, Ignacio J. & Lujano, Juan & Aso, Ismael, 2011. "Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage," Applied Energy, Elsevier, vol. 88(11), pages 4033-4041.
    19. Zhihe Chen & Shuai Wei, 2014. "Application of System Dynamics to Water Security Research," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 287-300, January.
    20. Yadoo, Annabel & Cruickshank, Heather, 2012. "The role for low carbon electrification technologies in poverty reduction and climate change strategies: A focus on renewable energy mini-grids with case studies in Nepal, Peru and Kenya," Energy Policy, Elsevier, vol. 42(C), pages 591-602.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:42:y:2012:i:c:p:201-212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.