IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i1p234-247.html
   My bibliography  Save this article

Reduce energy use and greenhouse gas emissions from global dairy processing facilities

Author

Listed:
  • Xu, Tengfang
  • Flapper, Joris

Abstract

Global butter, concentrated milk, and milk powder products use approximately 15% of annual raw milk production. Similar to cheese and fluid milk, dairy processing of these products can be energy intensive. In this paper, we analyzed production and energy data compiled through extensive literature reviews on butter, concentrated milk, milk and whey powder processing across various countries and plants. Magnitudes of national final and primary specific energy consumption (SEC) exhibited large variations across dairy products; in addition, the final SEC of individual plants and products exhibited significant variations within a country and between countries. Furthermore, we quantified national energy intensity indicators (EIIs) accounting for dairy product mixes and technological advancement. The significant variations of SEC and EII values indicate a high degree of likelihood that there is significant potential for energy savings in the global dairy processing industry. Based upon the study samples, we estimate potential energy savings for dairy processing industry in selected countries, and estimates annual reduction of 9-14 million metric-ton carbon-equivalent1 could be achieved if measures are implemented to lower SEC values by 50-80% in half of global dairy plants. The paper calls for publication of more energy data from the dairy processing industry.

Suggested Citation

  • Xu, Tengfang & Flapper, Joris, 2011. "Reduce energy use and greenhouse gas emissions from global dairy processing facilities," Energy Policy, Elsevier, vol. 39(1), pages 234-247, January.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:1:p:234-247
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00723-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramírez, C.A. & Patel, M. & Blok, K., 2006. "From fluid milk to milk powder: Energy use and energy efficiency in the European dairy industry," Energy, Elsevier, vol. 31(12), pages 1984-2004.
    2. Xu, Tengfang & Flapper, Joris & Kramer, Klaas Jan, 2009. "Characterization of energy use and performance of global cheese processing," Energy, Elsevier, vol. 34(11), pages 1993-2000.
    3. Xu, Tengfang & Flapper, Joris, 2009. "Energy use and implications for efficiency strategies in global fluid-milk processing industry," Energy Policy, Elsevier, vol. 37(12), pages 5334-5341, December.
    4. Sims, Ralph E. H. & Rogner, Hans-Holger & Gregory, Ken, 2003. "Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation," Energy Policy, Elsevier, vol. 31(13), pages 1315-1326, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masera, Kemal & Tannous, Hadi & Stojceska, Valentina & Tassou, Savvas, 2023. "An investigation of the recent advances of the integration of solar thermal energy systems to the dairy processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    2. Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Philipp, Matthias & Peesel, Ron-Hendrik, 2018. "Process and utility systems integration and optimisation for ultra-low energy milk powder production," Energy, Elsevier, vol. 146(C), pages 67-81.
    3. Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2022. "An Econometric Model of the Operation of the Steel Industry in POLAND in the Context of Process Heat and Energy Consumption," Energies, MDPI, vol. 15(21), pages 1-26, October.
    4. Fitzpatrick, John J. & Dooley, Paul, 2017. "Holistic view of CO2 reduction potential from energy use by an individual processing company," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 336-343.
    5. Joe F. Bozeman & Rayne Bozeman & Thomas L. Theis, 2020. "Overcoming climate change adaptation barriers: A study on food–energy–water impacts of the average American diet by demographic group," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 383-399, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2023. "Energy Indicators for Enabling Energy Transition in Industry," Energies, MDPI, vol. 16(2), pages 1-18, January.
    2. Karakaya, Ahmet & Özilgen, Mustafa, 2011. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes," Energy, Elsevier, vol. 36(8), pages 5101-5110.
    3. Giacone, E. & Mancò, S., 2012. "Energy efficiency measurement in industrial processes," Energy, Elsevier, vol. 38(1), pages 331-345.
    4. Xu, Tengfang & Karali, Nihan & Sathaye, Jayant, 2014. "Undertaking high impact strategies: The role of national efficiency measures in long-term energy and emission reduction in steel making," Applied Energy, Elsevier, vol. 122(C), pages 179-188.
    5. Dhayaneswaran, Y. & Ashok Kumar, L., 2014. "A study on current characteristics of induction motor while operating at its base frequency in textile industry," Energy, Elsevier, vol. 74(C), pages 340-345.
    6. Saygin, D. & Worrell, E. & Patel, M.K. & Gielen, D.J., 2011. "Benchmarking the energy use of energy-intensive industries in industrialized and in developing countries," Energy, Elsevier, vol. 36(11), pages 6661-6673.
    7. Dario Friso & Lucia Bortolini & Federica Tono, 2020. "Exergetic Analysis and Exergy Loss Reduction in the Milk Pasteurization for Italian Cheese Production," Energies, MDPI, vol. 13(3), pages 1-16, February.
    8. Piotr Borawski & Beata Kalinowska & Bartosz Mickiewicz & Andrzej Parzonko & Bogdan Klepacki & James Willam Dunn, 2021. "Changes in the Milk Market in the United States on the Background of the European Union and the World," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 1010-1033.
    9. Xu, Tengfang & Flapper, Joris, 2009. "Energy use and implications for efficiency strategies in global fluid-milk processing industry," Energy Policy, Elsevier, vol. 37(12), pages 5334-5341, December.
    10. Nunes, J. & Silva, Pedro D. & Andrade, L.P. & Gaspar, Pedro D., 2016. "Key points on the energy sustainable development of the food industry – Case study of the Portuguese sausages industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 393-411.
    11. Özilgen, Mustafa & Sorgüven, Esra, 2011. "Energy and exergy utilization, and carbon dioxide emission in vegetable oil production," Energy, Elsevier, vol. 36(10), pages 5954-5967.
    12. Mirade, Pierre-Sylvain & Perret, Bruno & Guillemin, Hervé & Picque, Daniel & Desserre, Béatrice & Montel, Marie-Christine & Corrieu, Georges, 2012. "Quantifying energy savings during cheese ripening after implementation of sequential air ventilation in an industrial cheesemaking plant," Energy, Elsevier, vol. 46(1), pages 248-258.
    13. Palamutcu, S., 2010. "Electric energy consumption in the cotton textile processing stages," Energy, Elsevier, vol. 35(7), pages 2945-2952.
    14. Viebahn, Peter & Daniel, Vallentin & Samuel, Höller, 2012. "Integrated assessment of carbon capture and storage (CCS) in the German power sector and comparison with the deployment of renewable energies," Applied Energy, Elsevier, vol. 97(C), pages 238-248.
    15. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    16. Piotr Bórawski & Marta Guth & Andrzej Parzonko & Tomasz Rokicki & Aleksandra Perkowska & James William Dunn, 2021. "Price volatility of milk and dairy products in Poland after accession to the EU," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 67(3), pages 111-119.
    17. Ahmetović, Elvis & Ibrić, Nidret & Kravanja, Zdravko & Grossmann, Ignacio E. & Maréchal, François & Čuček, Lidija & Kermani, Maziar, 2018. "Simultaneous optimisation and heat integration of evaporation systems including mechanical vapour recompression and background process," Energy, Elsevier, vol. 158(C), pages 1160-1191.
    18. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    19. Naeem, Muhammad Abubakr & Arfaoui, Nadia, 2023. "Exploring downside risk dependence across energy markets: Electricity, conventional energy, carbon, and clean energy during episodes of market crises," Energy Economics, Elsevier, vol. 127(PB).
    20. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:1:p:234-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.