IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v35y2007i9p4650-4660.html
   My bibliography  Save this article

Stockholm CHP potential--An opportunity for CO2 reductions?

Author

Listed:
  • Danestig, Maria
  • Gebremehdin, Alemayehu
  • Karlsson, Bjorn

Abstract

No abstract is available for this item.

Suggested Citation

  • Danestig, Maria & Gebremehdin, Alemayehu & Karlsson, Bjorn, 2007. "Stockholm CHP potential--An opportunity for CO2 reductions?," Energy Policy, Elsevier, vol. 35(9), pages 4650-4660, September.
  • Handle: RePEc:eee:enepol:v:35:y:2007:i:9:p:4650-4660
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(07)00144-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hughes, Larry & Bohan, Kathleen & Good, Joel & Jafapur, Khosrow, 2005. "Calculating residential carbon dioxide emissions--a new approach," Energy Policy, Elsevier, vol. 33(14), pages 1865-1871, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amiri, Shahnaz & Weinberger, Gottfried, 2018. "Increased cogeneration of renewable electricity through energy cooperation in a Swedish district heating system - A case study," Renewable Energy, Elsevier, vol. 116(PA), pages 866-877.
    2. Truong, Nguyen Le & Gustavsson, Leif, 2014. "Minimum-cost district heat production systems of different sizes under different environmental and social cost scenarios," Applied Energy, Elsevier, vol. 136(C), pages 881-893.
    3. Weinberger, Gottfried & Moshfegh, Bahram, 2018. "Investigating influential techno-economic factors for combined heat and power production using optimization and metamodeling," Applied Energy, Elsevier, vol. 232(C), pages 555-571.
    4. Meybodi, Mehdi Aghaei & Behnia, Masud, 2011. "Impact of carbon tax on internal combustion engine size selection in a medium scale CHP system," Applied Energy, Elsevier, vol. 88(12), pages 5153-5163.
    5. Weinberger, Gottfried & Amiri, Shahnaz & Moshfegh, Bahram, 2017. "On the benefit of integration of a district heating system with industrial excess heat: An economic and environmental analysis," Applied Energy, Elsevier, vol. 191(C), pages 454-468.
    6. Duquette, Jean & Wild, Peter & Rowe, Andrew, 2014. "The potential benefits of widespread combined heat and power based district energy networks in the province of Ontario," Energy, Elsevier, vol. 67(C), pages 41-51.
    7. Gebremedhin, Alemayehu & De Oliveira Granheim, Jarle, 2012. "Is there a space for additional renewable energy in the Norwegian power system? Potential for reduced global emission?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1611-1615.
    8. Djuric Ilic, Danica & Dotzauer, Erik & Trygg, Louise, 2012. "District heating and ethanol production through polygeneration in Stockholm," Applied Energy, Elsevier, vol. 91(1), pages 214-221.
    9. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    10. Joelsson, Jonas & Gustavsson, Leif, 2012. "Swedish biomass strategies to reduce CO2 emission and oil use in an EU context," Energy, Elsevier, vol. 43(1), pages 448-468.
    11. Horvath, Christopher & Hwang, Yunho & Radermacher, Reinhard & Gerstler, William & Tang, Ching-Jen, 2014. "Waste heat and electrically driven hybrid cooling systems for a high ambient temperature, off-grid application," Energy, Elsevier, vol. 66(C), pages 711-721.
    12. Gebremedhin, Alemayehu, 2012. "Introducing District Heating in a Norwegian town – Potential for reduced Local and Global Emissions," Applied Energy, Elsevier, vol. 95(C), pages 300-304.
    13. Chulseung Lee & Jaechan Park & Kangmun Lee & Ji Yeon Yang & Taewoo Roh, 2019. "Energy Efficiency for Supplier and Sustainability for Demand: A Case of Heating Systems in South Korea," Sustainability, MDPI, vol. 11(15), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vadas, Timothy M. & Fahey, Timothy J. & Sherman, Ruth E. & Kay, David, 2007. "Local-scale analysis of carbon mitigation strategies: Tompkins County, New York, USA," Energy Policy, Elsevier, vol. 35(11), pages 5515-5525, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:35:y:2007:i:9:p:4650-4660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.