IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v177y2023ics0301421523000204.html
   My bibliography  Save this article

China and the energy matrix in Latin America: Governance and geopolitical perspective

Author

Listed:
  • Ugarteche, Oscar
  • de León, Carlos
  • García, Joselin

Abstract

The importance of energy for States is fundamental. The proper functioning of production depends on energy security and energy policies. It is an object of geopolitics to control a region's production strategically. With the fight against climate change, green energy policies became relevant. In Latin America, the energy supply has various fossil and non-fossil fuels, primarily hydroelectric and alternative renewables. Energy demand is weak for EVs and mass transport vehicles. The energy matrix change process is led by China in Latin America, with a powerful presence through both credits and investments, both in renewable energy generation and the demand for EVs. Generally, she has invested the most money in energy in the world. Theoretically, there is a geopolitical issue as China has stepped into the US “backyard”. The result is that the energy matrix change has implications for domestic taxation, international trade, and inter-American relations. Chinese foreign direct investment (FDI) in Latin America has concentrated mainly on renewable energy since 2015, with strong resistance from the United States.

Suggested Citation

  • Ugarteche, Oscar & de León, Carlos & García, Joselin, 2023. "China and the energy matrix in Latin America: Governance and geopolitical perspective," Energy Policy, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:enepol:v:177:y:2023:i:c:s0301421523000204
    DOI: 10.1016/j.enpol.2023.113435
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421523000204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2023.113435?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grubler, Arnulf, 2012. "Energy transitions research: Insights and cautionary tales," Energy Policy, Elsevier, vol. 50(C), pages 8-16.
    2. Ke, Wenwei & Zhang, Shaojun & He, Xiaoyi & Wu, Ye & Hao, Jiming, 2017. "Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress," Applied Energy, Elsevier, vol. 188(C), pages 367-377.
    3. Haider Ali Abbasi & Satirenjit Kaur Johl & Zullina Bt Hussain Shaari & Wajiha Moughal & Muhammad Mazhar & Muhammad Ali Musarat & Waqas Rafiq & Asaad Salam Farooqi & Alexey Borovkov, 2021. "Consumer Motivation by Using Unified Theory of Acceptance and Use of Technology towards Electric Vehicles," Sustainability, MDPI, vol. 13(21), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai‐Hua Wang & Zu‐Shan Wang & Hong‐Wen Liu & Xin Li, 2023. "Economic policy uncertainty and geopolitical risk: evidence from China and Southeast Asia," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 37(2), pages 96-118, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    2. Atanu Ghoshray & Issam Malki, 2021. "The share of the global energy mix: Signs of convergence?," Bulletin of Economic Research, Wiley Blackwell, vol. 73(1), pages 34-50, January.
    3. Caragliu, Andrea & Graziano, Marcello, 2022. "The spatial dimension of energy transition policies, practices and technologies," Energy Policy, Elsevier, vol. 168(C).
    4. Bessi, Alessandro & Guidolin, Mariangela & Manfredi, Piero, 2021. "The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Detlef Vuuren & Elke Stehfest, 2013. "If climate action becomes urgent: the importance of response times for various climate strategies," Climatic Change, Springer, vol. 121(3), pages 473-486, December.
    6. Grażyna Wojtkowska-Łodej & Elżbieta Jakubów, 2022. "The Role of Clean Generation Technologies in the Energy Transformation in Poland," Energies, MDPI, vol. 15(13), pages 1-18, July.
    7. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    8. Stephany Isabel Vallarta-Serrano & Ana Bricia Galindo-Muro & Riccardo Cespi & Rogelio Bustamante-Bello, 2023. "Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico," Energies, MDPI, vol. 16(13), pages 1-19, June.
    9. Lukáš Režný & Vladimír Bureš, 2019. "Energy Transition Scenarios and Their Economic Impacts in the Extended Neoclassical Model of Economic Growth," Sustainability, MDPI, vol. 11(13), pages 1-25, July.
    10. Sovacool, Benjamin K. & Martiskainen, Mari, 2020. "Hot transformations: Governing rapid and deep household heating transitions in China, Denmark, Finland and the United Kingdom," Energy Policy, Elsevier, vol. 139(C).
    11. István Árpád & Judit T. Kiss & Gábor Bellér & Dénes Kocsis, 2021. "Sustainability Investigation of Vehicles’ CO 2 Emission in Hungary," Sustainability, MDPI, vol. 13(15), pages 1-15, July.
    12. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
    13. Karoliina Isoaho & Jochen Markard, 2020. "The Politics of Technology Decline: Discursive Struggles over Coal Phase‐Out in the UK," Review of Policy Research, Policy Studies Organization, vol. 37(3), pages 342-368, May.
    14. Fridstrøm, Lasse, 2017. "From innovation to penetration: Calculating the energy transition time lag for motor vehicles," Energy Policy, Elsevier, vol. 108(C), pages 487-502.
    15. Lee, Jungwoo & Yang, Jae-Suk, 2019. "Global energy transitions and political systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    16. Fagerberg, Jan, 2018. "Mobilizing innovation for sustainability transitions: A comment on transformative innovation policy," Research Policy, Elsevier, vol. 47(9), pages 1568-1576.
    17. Ruth Winecoff & Michelle Graff, 2020. "Innovation in Financing Energy‐Efficient and Renewable Energy Upgrades: An Evaluation of Property Assessed Clean Energy for California Residences," Social Science Quarterly, Southwestern Social Science Association, vol. 101(7), pages 2555-2573, December.
    18. Laura Rodríguez-Fernández & Ana Belén Fernández Carvajal & María Bujidos-Casado, 2020. "Allocation of Greenhouse Gas Emissions Using the Fairness Principle: A Multi-Country Analysis," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
    19. Roberts, Cameron & Greene, Jenna & Nemet, Gregory F., 2023. "Key enablers for carbon dioxide removal through the application of biochar to agricultural soils: Evidence from three historical analogues," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    20. Juliana Subtil Lacerda & Jeroen C. J. M. Van den Bergh, 2014. "International Diffusion of Renewable Energy Innovations: Lessons from the Lead Markets for Wind Power in China, Germany and USA," Energies, MDPI, vol. 7(12), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:177:y:2023:i:c:s0301421523000204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.