IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v108y2017icp702-711.html
   My bibliography  Save this article

A novel cost reducing reactive power market structure for modifying mandatory generation regions of producers

Author

Listed:
  • Ahmadimanesh, A.
  • Kalantar, M.

Abstract

In this paper, a new reactive power market structure is studied and presented. Active power flow by itself causes active and reactive losses. Considering such losses in the reactive power market is the main purpose of this paper. Therefore, this study attempts to improve the reactive power market and create fair competition between producers. To that end, first, a new allocation method for reactive power losses is presented and the contribution of each producer in reactive losses is calculated. In the next step, this share of losses is used to modify the mandatory generation region of units. Then, a new structure is proposed for the reactive power market. This novel structure leads to reduction of system costs in the deregulated power system, which is one of the main policy implications of this paper. Finally, simulations show that the total payment by Independent System Operator will be reduced via application of the proposed methods leading to reduction in system costs. This cost reduction will be significant enough to encourage Independent System Operators to utilize such a structure. In addition, by implementing the new proposed methods, assignment of costs related to reactive power loss will be more justifiable for each generator.

Suggested Citation

  • Ahmadimanesh, A. & Kalantar, M., 2017. "A novel cost reducing reactive power market structure for modifying mandatory generation regions of producers," Energy Policy, Elsevier, vol. 108(C), pages 702-711.
  • Handle: RePEc:eee:enepol:v:108:y:2017:i:c:p:702-711
    DOI: 10.1016/j.enpol.2017.06.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517304007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.06.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rabiee, A. & Shayanfar, H. & Amjady, N., 2009. "Multiobjective clearing of reactive power market in deregulated power systems," Applied Energy, Elsevier, vol. 86(9), pages 1555-1564, September.
    2. Jiang, Bo & Farid, Amro M. & Youcef-Toumi, Kamal, 2015. "Demand side management in a day-ahead wholesale market: A comparison of industrial & social welfare approaches," Applied Energy, Elsevier, vol. 156(C), pages 642-654.
    3. Fotouhi Ghazvini, Mohammad Ali & Soares, João & Horta, Nuno & Neves, Rui & Castro, Rui & Vale, Zita, 2015. "A multi-objective model for scheduling of short-term incentive-based demand response programs offered by electricity retailers," Applied Energy, Elsevier, vol. 151(C), pages 102-118.
    4. Saraswat, Amit & Saini, Ashish & Saxena, Ajay Kumar, 2013. "A novel multi-zone reactive power market settlement model: A pareto-optimization approach," Energy, Elsevier, vol. 51(C), pages 85-100.
    5. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2015. "Smart households: Dispatch strategies and economic analysis of distributed energy storage for residential peak shaving," Applied Energy, Elsevier, vol. 147(C), pages 246-257.
    6. Kargarian, A. & Raoofat, M. & Mohammadi, M., 2011. "Reactive power market management considering voltage control area reserve and system security," Applied Energy, Elsevier, vol. 88(11), pages 3832-3840.
    7. Su, Wencong & Huang, Alex Q., 2014. "A game theoretic framework for a next-generation retail electricity market with high penetration of distributed residential electricity suppliers," Applied Energy, Elsevier, vol. 119(C), pages 341-350.
    8. Antunes, Carlos Henggeler & Pires, Dulce Fernão & Barrico, Carlos & Gomes, Álvaro & Martins, António Gomes, 2009. "A multi-objective evolutionary algorithm for reactive power compensation in distribution networks," Applied Energy, Elsevier, vol. 86(7-8), pages 977-984, July.
    9. Bradbury, Kyle & Pratson, Lincoln & Patiño-Echeverri, Dalia, 2014. "Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets," Applied Energy, Elsevier, vol. 114(C), pages 512-519.
    10. Pearre, Nathaniel S. & Swan, Lukas G., 2015. "Technoeconomic feasibility of grid storage: Mapping electrical services and energy storage technologies," Applied Energy, Elsevier, vol. 137(C), pages 501-510.
    11. Biswas (Raha), Syamasree & Mandal, Kamal Krishna & Chakraborty, Niladri, 2016. "Pareto-efficient double auction power transactions for economic reactive power dispatch," Applied Energy, Elsevier, vol. 168(C), pages 610-627.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharma, Akanksha & Jain, Sanjay K., 2021. "Day-ahead optimal reactive power ancillary service procurement under dynamic multi-objective framework in wind integrated deregulated power system," Energy, Elsevier, vol. 223(C).
    2. Bielecki, Sławomir & Skoczkowski, Tadeusz, 2018. "An enhanced concept of Q-power management," Energy, Elsevier, vol. 162(C), pages 335-353.
    3. Anaya, Karim L. & Pollitt, Michael G., 2022. "A social cost benefit analysis for the procurement of reactive power: The case of Power Potential," Applied Energy, Elsevier, vol. 312(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biswas (Raha), Syamasree & Mandal, Kamal Krishna & Chakraborty, Niladri, 2016. "Pareto-efficient double auction power transactions for economic reactive power dispatch," Applied Energy, Elsevier, vol. 168(C), pages 610-627.
    2. Gandhi, Oktoviano & Rodríguez-Gallegos, Carlos D. & Zhang, Wenjie & Srinivasan, Dipti & Reindl, Thomas, 2018. "Economic and technical analysis of reactive power provision from distributed energy resources in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 827-841.
    3. Li, Zhengshuo & Guo, Qinglai & Sun, Hongbin & Wang, Jianhui, 2015. "Storage-like devices in load leveling: Complementarity constraints and a new and exact relaxation method," Applied Energy, Elsevier, vol. 151(C), pages 13-22.
    4. Muhammad, Yasir & Khan, Nusrat & Awan, Saeed Ehsan & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Kiani, Adiqa Kausar & Ullah, Farman & Shu, Chi-Min, 2022. "Fractional memetic computing paradigm for reactive power management involving wind-load chaos and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    5. Anaya, Karim L. & Pollitt, Michael G., 2022. "A social cost benefit analysis for the procurement of reactive power: The case of Power Potential," Applied Energy, Elsevier, vol. 312(C).
    6. Jay, Devika & Swarup, K.S., 2021. "A comprehensive survey on reactive power ancillary service markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Sousa, Tiago & Morais, Hugo & Vale, Zita & Castro, Rui, 2015. "A multi-objective optimization of the active and reactive resource scheduling at a distribution level in a smart grid context," Energy, Elsevier, vol. 85(C), pages 236-250.
    8. Goteti, Naga Srujana & Hittinger, Eric & Sergi, Brian & Lima Azevedo, Inês, 2021. "How does new energy storage affect the operation and revenue of existing generation?," Applied Energy, Elsevier, vol. 285(C).
    9. Paulo Rotella Junior & Luiz Célio Souza Rocha & Sandra Naomi Morioka & Ivan Bolis & Gianfranco Chicco & Andrea Mazza & Karel Janda, 2021. "Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives," Energies, MDPI, vol. 14(9), pages 1-29, April.
    10. Cavazzini, Giovanna & Houdeline, Jean-Bernard & Pavesi, Giorgio & Teller, Olivier & Ardizzon, Guido, 2018. "Unstable behaviour of pump-turbines and its effects on power regulation capacity of pumped-hydro energy storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 399-409.
    11. Karim Anaya & Michael Pollitt, 2021. "An evaluation of a local reactive power market: the case of Power Potential," Working Papers EPRG2124, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    12. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
    13. Braeuer, Fritz & Rominger, Julian & McKenna, Russell & Fichtner, Wolf, 2019. "Battery storage systems: An economic model-based analysis of parallel revenue streams and general implications for industry," Applied Energy, Elsevier, vol. 239(C), pages 1424-1440.
    14. Canizes, Bruno & Soares, João & Faria, Pedro & Vale, Zita, 2013. "Mixed integer non-linear programming and Artificial Neural Network based approach to ancillary services dispatch in competitive electricity markets," Applied Energy, Elsevier, vol. 108(C), pages 261-270.
    15. Chen, Yang & Hu, Mengqi & Zhou, Zhi, 2017. "A data-driven analytical approach to enable optimal emerging technologies integration in the co-optimized electricity and ancillary service markets," Energy, Elsevier, vol. 122(C), pages 613-626.
    16. Chazarra, Manuel & Pérez-Díaz, Juan I. & García-González, Javier & Praus, Roland, 2018. "Economic viability of pumped-storage power plants participating in the secondary regulation service," Applied Energy, Elsevier, vol. 216(C), pages 224-233.
    17. Yiqi Dong & Zuoji Dong, 2023. "Bibliometric Analysis of Game Theory on Energy and Natural Resource," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    18. Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
    19. Tang, Rui & Li, Hangxin & Wang, Shengwei, 2019. "A game theory-based decentralized control strategy for power demand management of building cluster using thermal mass and energy storage," Applied Energy, Elsevier, vol. 242(C), pages 809-820.
    20. Ibrahim, Amin & Rahnamayan, Shahryar & Vargas Martin, Miguel & Yilbas, Bekir, 2014. "Multi-objective thermal analysis of a thermoelectric device: Influence of geometric features on device characteristics," Energy, Elsevier, vol. 77(C), pages 305-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:108:y:2017:i:c:p:702-711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.