IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v94y2021ics0140988320303765.html
   My bibliography  Save this article

Decoupling and recoupling in the crude oil price benchmarks: An investigation of similarity patterns

Author

Listed:
  • Mastroeni, Loretta
  • Mazzoccoli, Alessandro
  • Quaresima, Greta
  • Vellucci, Pierluigi

Abstract

The aim of this paper is to investigate the decoupling and recoupling of WTI and Brent prices also with respect to the debate on the regionalisation-globalisation of the two oil markets.To this purpose, we employ the Dynamic Time Warping (DTW) algorithm to identify decoupling events between the two crude oil price series. DTW has been employed for classification and clustering aims in many fields, but in this paper we make a slightly different application of DTW with respect to those provided by the literature, demonstrating how DTW can be employed also to investigate the decoupling between the two oil benchmarks. Our analysis reveals that the two oil benchmarks decouple and recouple according to WTI local market conditions. Therefore, we found evidence that WTI-Brent market is not fully integrated at all times. We also propose two DTW-based indexes: Relative-Alignment Index (RAI) and Warping Index. The first confirms that the greatest decoupling between WTI and Brent occurs because of WTI local market conditions and is useful in highlighting the main decoupling between our crude oil series over time, while the second provides information on the time window of crude oil price decoupling. Lastly, we provide some policy implications based on our results.

Suggested Citation

  • Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta & Vellucci, Pierluigi, 2021. "Decoupling and recoupling in the crude oil price benchmarks: An investigation of similarity patterns," Energy Economics, Elsevier, vol. 94(C).
  • Handle: RePEc:eee:eneeco:v:94:y:2021:i:c:s0140988320303765
    DOI: 10.1016/j.eneco.2020.105036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988320303765
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2020.105036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    2. Lutz Kilian, 2016. "The Impact of the Shale Oil Revolution on U.S. Oil and Gasoline Prices," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(2), pages 185-205.
    3. Wai‐Man Liu & Emma Schultz & John Swieringa, 2015. "Price Dynamics in Global Crude Oil Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(2), pages 148-162, February.
    4. Chen, Wei & Huang, Zhuo & Yi, Yanping, 2015. "Is there a structural change in the persistence of WTI–Brent oil price spreads in the post-2010 period?," Economic Modelling, Elsevier, vol. 50(C), pages 64-71.
    5. Giorgino, Toni, 2009. "Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i07).
    6. Huei-Chu Liao & Shu-Chuan Lin & Ho-Chuan Huang, 2014. "Are crude oil markets globalized or regionalized? Evidence from WTI and Brent," Applied Economics Letters, Taylor & Francis Journals, vol. 21(4), pages 235-241, March.
    7. Scheitrum, Daniel P. & Carter, Colin A. & Revoredo-Giha, Cesar, 2018. "WTI and Brent futures pricing structure," Energy Economics, Elsevier, vol. 72(C), pages 462-469.
    8. Caporin, Massimiliano & Fontini, Fulvio & Talebbeydokhti, Elham, 2019. "Testing persistence of WTI and Brent long-run relationship after the shale oil supply shock," Energy Economics, Elsevier, vol. 79(C), pages 21-31.
    9. Bravo Caro, José Manuel & Golpe, Antonio A. & Iglesias, Jesús & Vides, José Carlos, 2020. "A new way of measuring the WTI – Brent spread. Globalization, shock persistence and common trends," Energy Economics, Elsevier, vol. 85(C).
    10. Bahattin Buyuksahin, Thomas K. Lee, James T. Moser, and Michel A. Robe, 2013. "Physical Markets, Paper Markets and the WTI-Brent Spread," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    11. Fattouh, Bassam, 2010. "The dynamics of crude oil price differentials," Energy Economics, Elsevier, vol. 32(2), pages 334-342, March.
    12. Brigida, Matthew, 2014. "The switching relationship between natural gas and crude oil prices," Energy Economics, Elsevier, vol. 43(C), pages 48-55.
    13. Kao, Chung-Wei & Wan, Jer-Yuh, 2012. "Price discount, inventories and the distortion of WTI benchmark," Energy Economics, Elsevier, vol. 34(1), pages 117-124.
    14. Kaufmann, Robert K. & Ullman, Ben, 2009. "Oil prices, speculation, and fundamentals: Interpreting causal relations among spot and futures prices," Energy Economics, Elsevier, vol. 31(4), pages 550-558, July.
    15. Wang, Gang-Jin & Xie, Chi & Han, Feng & Sun, Bo, 2012. "Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4136-4146.
    16. Zhang, Dayong & Ji, Qiang & Kutan, Ali M., 2019. "Dynamic transmission mechanisms in global crude oil prices: Estimation and implications," Energy, Elsevier, vol. 175(C), pages 1181-1193.
    17. Kenneth J. Singleton, 2014. "Investor Flows and the 2008 Boom/Bust in Oil Prices," Management Science, INFORMS, vol. 60(2), pages 300-318, February.
    18. Robert J. Weiner, 1991. "Is the World Oil Market "One Great Pool"?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 95-108.
    19. Loretta Mastroeni & Pierluigi Vellucci, 2020. "Chaos Versus Stochastic Paradigm in Energy Markets," World Scientific Book Chapters, in: Stéphane Goutte & Duc Khuong Nguyen (ed.), HANDBOOK OF ENERGY FINANCE Theories, Practices and Simulations, chapter 30, pages 765-786, World Scientific Publishing Co. Pte. Ltd..
    20. Klein, Tony, 2018. "Trends and contagion in WTI and Brent crude oil spot and futures markets - The role of OPEC in the last decade," Energy Economics, Elsevier, vol. 75(C), pages 636-646.
    21. Mastroeni, Loretta & Vellucci, Pierluigi & Naldi, Maurizio, 2018. "Co-existence of stochastic and chaotic behaviour in the copper price time series," Resources Policy, Elsevier, vol. 58(C), pages 295-302.
    22. Mastroeni, Loretta & Vellucci, Pierluigi & Naldi, Maurizio, 2019. "A reappraisal of the chaotic paradigm for energy commodity prices," Energy Economics, Elsevier, vol. 82(C), pages 167-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis Chatziantoniou & David Gabauer & Rangan Gupta, 2021. "Integration and Risk Transmission in the Market for Crude Oil: A Time-Varying Parameter Frequency Connectedness Approach," Working Papers 202147, University of Pretoria, Department of Economics.
    2. Loretta Mastroeni & Pierluigi Vellucci, 2022. "Construction of an SDE Model from Intraday Copper Futures Prices," Risks, MDPI, vol. 10(11), pages 1-21, November.
    3. Chatziantoniou, Ioannis & Gabauer, David & Perez de Gracia, Fernando, 2022. "Tail risk connectedness in the refined petroleum market: A first look at the impact of the COVID-19 pandemic," Energy Economics, Elsevier, vol. 111(C).
    4. Chatziantoniou, Ioannis & Gabauer, David & Gupta, Rangan, 2023. "Integration and risk transmission in the market for crude oil: New evidence from a time-varying parameter frequency connectedness approach," Resources Policy, Elsevier, vol. 84(C).
    5. Gao, Xin & Li, Bingxin & Liu, Rui, 2023. "The relative pricing of WTI and Brent crude oil futures: Expectations or risk premia?," Journal of Commodity Markets, Elsevier, vol. 30(C).
    6. Asit Kumar Das & Debahuti Mishra & Kaberi Das & Pradeep Kumar Mallick & Sachin Kumar & Mikhail Zymbler & Hesham El-Sayed, 2022. "Prophesying the Short-Term Dynamics of the Crude Oil Future Price by Adopting the Survival of the Fittest Principle of Improved Grey Optimization and Extreme Learning Machine," Mathematics, MDPI, vol. 10(7), pages 1-33, March.
    7. Wang, Tiantian & Qu, Wan & Zhang, Dayong & Ji, Qiang & Wu, Fei, 2022. "Time-varying determinants of China's liquefied natural gas import price: A dynamic model averaging approach," Energy, Elsevier, vol. 259(C).
    8. Luka Jovanovic & Dejan Jovanovic & Nebojsa Bacanin & Ana Jovancai Stakic & Milos Antonijevic & Hesham Magd & Ravi Thirumalaisamy & Miodrag Zivkovic, 2022. "Multi-Step Crude Oil Price Prediction Based on LSTM Approach Tuned by Salp Swarm Algorithm with Disputation Operator," Sustainability, MDPI, vol. 14(21), pages 1-29, November.
    9. Liang, Xuedong & Luo, Peng & Li, Xiaoyan & Wang, Xia & Shu, Lingli, 2023. "Crude oil price prediction using deep reinforcement learning," Resources Policy, Elsevier, vol. 81(C).
    10. Michail Filippidis & George Filis & Georgios Magkonis & Panagiotis Tzouvanas, 2023. "Evaluating robust determinants of the WTI/Brent oil price differential: A dynamic model averaging analysis," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(6), pages 807-825, June.
    11. Wang, Tiantian & Wu, Fei & Zhang, Dayong & Ji, Qiang, 2023. "Energy market reforms in China and the time-varying connectedness of domestic and international markets," Energy Economics, Elsevier, vol. 117(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Xin & Li, Bingxin & Liu, Rui, 2023. "The relative pricing of WTI and Brent crude oil futures: Expectations or risk premia?," Journal of Commodity Markets, Elsevier, vol. 30(C).
    2. Ioannis Chatziantoniou & David Gabauer & Rangan Gupta, 2021. "Integration and Risk Transmission in the Market for Crude Oil: A Time-Varying Parameter Frequency Connectedness Approach," Working Papers 202147, University of Pretoria, Department of Economics.
    3. Jerome Geyer‐Klingeberg & Andreas W. Rathgeber, 2021. "Determinants of the WTI‐Brent price spread revisited," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(5), pages 736-757, May.
    4. Bravo Caro, José Manuel & Golpe, Antonio A. & Iglesias, Jesús & Vides, José Carlos, 2020. "A new way of measuring the WTI – Brent spread. Globalization, shock persistence and common trends," Energy Economics, Elsevier, vol. 85(C).
    5. Niyati Bhanja & Arif Billah Dar & Aviral Kumar Tiwari, 2018. "Do Global Crude Oil Markets Behave as One Great Pool? A Cyclical Analysis," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(2), pages 219-241, November.
    6. Caporin, Massimiliano & Fontini, Fulvio & Talebbeydokhti, Elham, 2019. "Testing persistence of WTI and Brent long-run relationship after the shale oil supply shock," Energy Economics, Elsevier, vol. 79(C), pages 21-31.
    7. Chatziantoniou, Ioannis & Gabauer, David & Gupta, Rangan, 2023. "Integration and risk transmission in the market for crude oil: New evidence from a time-varying parameter frequency connectedness approach," Resources Policy, Elsevier, vol. 84(C).
    8. Benedetto, Francesco & Mastroeni, Loretta & Quaresima, Greta & Vellucci, Pierluigi, 2020. "Does OVX affect WTI and Brent oil spot variance? Evidence from an entropy analysis," Energy Economics, Elsevier, vol. 89(C).
    9. Ruble, Isabella & Powell, John, 2021. "The Brent-WTI spread revisited: A novel approach," The Journal of Economic Asymmetries, Elsevier, vol. 23(C).
    10. Michael Plante and Grant Strickler, 2021. "Closer to One Great Pool? Evidence from Structural Breaks in Oil Price Differentials," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-30.
    11. Ayman Omar, 2015. "West Texas Intermediate and Brent Spread during Organization of the Petroleum Exporting Countries Supply Disruptions," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 693-703.
    12. Chen, Wei & Huang, Zhuo & Yi, Yanping, 2015. "Is there a structural change in the persistence of WTI–Brent oil price spreads in the post-2010 period?," Economic Modelling, Elsevier, vol. 50(C), pages 64-71.
    13. Samih Antoine Azar & Angelic Salha, 2017. "The Bias in the Long Run Relation between the Prices of BRENT and West Texas Intermediate Crude Oils," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 44-54.
    14. Ye, Shiyu & Karali, Berna, 2016. "Estimating relative price impact: The case of Brent and WTI," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235728, Agricultural and Applied Economics Association.
    15. Xiaoyong Xiao & Jing Huang, 2018. "Dynamic Connectedness of International Crude Oil Prices: The Diebold–Yilmaz Approach," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    16. Monge, Manuel & Gil-Alana, Luis Alberiko, 2021. "Spatial crude oil production divergence and crude oil price behaviour in the United States," Energy, Elsevier, vol. 232(C).
    17. Yuksel Haliloglu, Ebru & Sahin, Serkan & Berument, M. Hakan, 2021. "Brent–Dubai oil spread: Basic drivers," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 492-505.
    18. Scheitrum, Daniel P. & Carter, Colin A. & Revoredo-Giha, Cesar, 2018. "WTI and Brent futures pricing structure," Energy Economics, Elsevier, vol. 72(C), pages 462-469.
    19. Qiang Ji & Dayong Zhang & Yuqian Zhao, 2022. "Intra-day co-movements of crude oil futures: China and the international benchmarks," Annals of Operations Research, Springer, vol. 313(1), pages 77-103, June.
    20. Michail Filippidis & George Filis & Georgios Magkonis & Panagiotis Tzouvanas, 2023. "Evaluating robust determinants of the WTI/Brent oil price differential: A dynamic model averaging analysis," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(6), pages 807-825, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:94:y:2021:i:c:s0140988320303765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.