IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v287y2020i3p1161-1169.html
   My bibliography  Save this article

Fuzzy self-tuning differential evolution for optimal product line design

Author

Listed:
  • Tsafarakis, Stelios
  • Zervoudakis, Konstantinos
  • Andronikidis, Andreas
  • Altsitsiadis, Efthymios

Abstract

Designing a successful product line is a critical decision for a firm to stay competitive. By offering a line of products, the manufacturer can maximize profits or market share through satisfying more consumers than a single product would. The optimal Product Line Design (PLD) problem is classified as NP-hard. This paper proposes a Fuzzy Self-Tuning Differential Evolution (FSTDE) for PLD, which exploits Fuzzy Logic to automatically calculate the parameters independently for each solution during the optimization, thus resulting to a settings-free version of DE. The proposed method is compared to the most successful mutation strategies of the algorithm as well as previous approaches to the PLD problem, like Genetic Algorithm and Simulated Annealing, using both actual and artificial data of consumer preferences. The comparison results demonstrate that FSTDE is an attractive alternative approach to the PLD problem.

Suggested Citation

  • Tsafarakis, Stelios & Zervoudakis, Konstantinos & Andronikidis, Andreas & Altsitsiadis, Efthymios, 2020. "Fuzzy self-tuning differential evolution for optimal product line design," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1161-1169.
  • Handle: RePEc:eee:ejores:v:287:y:2020:i:3:p:1161-1169
    DOI: 10.1016/j.ejor.2020.05.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172030446X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.05.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Qinqin & Yan, Xuefeng & Zhang, Yilian, 2018. "Auto-selection mechanism of differential evolution algorithm variants and its application," European Journal of Operational Research, Elsevier, vol. 270(2), pages 636-653.
    2. Zhao, Zhiwei & Yang, Jingming & Hu, Ziyu & Che, Haijun, 2016. "A differential evolution algorithm with self-adaptive strategy and control parameters based on symmetric Latin hypercube design for unconstrained optimization problems," European Journal of Operational Research, Elsevier, vol. 250(1), pages 30-45.
    3. Albritton, M. David & McMullen, Patrick R., 2007. "Optimal product design using a colony of virtual ants," European Journal of Operational Research, Elsevier, vol. 176(1), pages 498-520, January.
    4. Salman, Ayed & Engelbrecht, Andries P. & Omran, Mahamed G.H., 2007. "Empirical analysis of self-adaptive differential evolution," European Journal of Operational Research, Elsevier, vol. 183(2), pages 785-804, December.
    5. Olivier Toubia & Duncan I. Simester & John R. Hauser & Ely Dahan, 2003. "Fast Polyhedral Adaptive Conjoint Estimation," Marketing Science, INFORMS, vol. 22(3), pages 273-303.
    6. Kohli, Rajeev & Krishnamurti, Ramesh, 1989. "Optimal product design using conjoint analysis: Computational complexity and algorithms," European Journal of Operational Research, Elsevier, vol. 40(2), pages 186-195, May.
    7. Paul E. Green & Abba M. Krieger, 1985. "Models and Heuristics for Product Line Selection," Marketing Science, INFORMS, vol. 4(1), pages 1-19.
    8. Suresh K. Nair & Lakshman S. Thakur & Kuang-Wei Wen, 1995. "Near Optimal Solutions for Product Line Design and Selection: Beam Search Heuristics," Management Science, INFORMS, vol. 41(5), pages 767-785, May.
    9. Alexouda, Georgia & Paparrizos, Konstantinos, 2001. "A genetic algorithm approach to the product line design problem using the seller's return criterion: An extensive comparative computational study," European Journal of Operational Research, Elsevier, vol. 134(1), pages 165-178, October.
    10. Alexandre Belloni & Robert Freund & Matthew Selove & Duncan Simester, 2008. "Optimizing Product Line Designs: Efficient Methods and Comparisons," Management Science, INFORMS, vol. 54(9), pages 1544-1552, September.
    11. Tsafarakis, Stelios & Marinakis, Yannis & Matsatsinis, Nikolaos, 2011. "Particle swarm optimization for optimal product line design," International Journal of Research in Marketing, Elsevier, vol. 28(1), pages 13-22.
    12. Stelios Tsafarakis, 2016. "Redesigning product lines in a period of economic crisis: a hybrid simulated annealing algorithm with crossover," Annals of Operations Research, Springer, vol. 247(2), pages 617-633, December.
    13. Rajeev Kohli & R. Sukumar, 1990. "Heuristics for Product-Line Design Using Conjoint Analysis," Management Science, INFORMS, vol. 36(12), pages 1464-1478, December.
    14. Al-Anzi, Fawaz S. & Allahverdi, Ali, 2007. "A self-adaptive differential evolution heuristic for two-stage assembly scheduling problem to minimize maximum lateness with setup times," European Journal of Operational Research, Elsevier, vol. 182(1), pages 80-94, October.
    15. Jeffrey D. Camm & James J. Cochran & David J. Curry & Sriram Kannan, 2006. "Conjoint Optimization: An Exact Branch-and-Bound Algorithm for the Share-of-Choice Problem," Management Science, INFORMS, vol. 52(3), pages 435-447, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Zhang & Rui Tang, 2023. "Dispatch for a Continuous-Time Microgrid Based on a Modified Differential Evolution Algorithm," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    2. Pantourakis, Michail & Tsafarakis, Stelios & Zervoudakis, Konstantinos & Altsitsiadis, Efthymios & Andronikidis, Andreas & Ntamadaki, Vasiliki, 2022. "Clonal selection algorithms for optimal product line design: A comparative study," European Journal of Operational Research, Elsevier, vol. 298(2), pages 585-595.
    3. Radouane Aalloul & Abdellah Elaissaoui & Mourad Benlattar & Rhma Adhiri, 2023. "Emerging Parameters Extraction Method of PV Modules Based on the Survival Strategies of Flying Foxes Optimization (FFO)," Energies, MDPI, vol. 16(8), pages 1-24, April.
    4. Manu Centeno-Telleria & Ekaitz Zulueta & Unai Fernandez-Gamiz & Daniel Teso-Fz-Betoño & Adrián Teso-Fz-Betoño, 2021. "Differential Evolution Optimal Parameters Tuning with Artificial Neural Network," Mathematics, MDPI, vol. 9(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pantourakis, Michail & Tsafarakis, Stelios & Zervoudakis, Konstantinos & Altsitsiadis, Efthymios & Andronikidis, Andreas & Ntamadaki, Vasiliki, 2022. "Clonal selection algorithms for optimal product line design: A comparative study," European Journal of Operational Research, Elsevier, vol. 298(2), pages 585-595.
    2. Xinfang (Jocelyn) Wang & Jeffrey D. Camm & David J. Curry, 2009. "A Branch-and-Price Approach to the Share-of-Choice Product Line Design Problem," Management Science, INFORMS, vol. 55(10), pages 1718-1728, October.
    3. Tan Wang & Genaro Gutierrez, 2022. "Robust Product Line Design by Protecting the Downside While Minding the Upside," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 194-217, January.
    4. Alexandre Belloni & Robert Freund & Matthew Selove & Duncan Simester, 2008. "Optimizing Product Line Designs: Efficient Methods and Comparisons," Management Science, INFORMS, vol. 54(9), pages 1544-1552, September.
    5. Tsafarakis, Stelios & Marinakis, Yannis & Matsatsinis, Nikolaos, 2011. "Particle swarm optimization for optimal product line design," International Journal of Research in Marketing, Elsevier, vol. 28(1), pages 13-22.
    6. Evan Rash & Karl Kempf, 2012. "Product Line Design and Scheduling at Intel," Interfaces, INFORMS, vol. 42(5), pages 425-436, October.
    7. Albritton, M. David & McMullen, Patrick R., 2007. "Optimal product design using a colony of virtual ants," European Journal of Operational Research, Elsevier, vol. 176(1), pages 498-520, January.
    8. G. E. Fruchter & A. Fligler & R. S. Winer, 2006. "Optimal Product Line Design: Genetic Algorithm Approach to Mitigate Cannibalization," Journal of Optimization Theory and Applications, Springer, vol. 131(2), pages 227-244, November.
    9. Dimitris Bertsimas & Velibor V. Mišić, 2019. "Exact First-Choice Product Line Optimization," Operations Research, INFORMS, vol. 67(3), pages 651-670, May.
    10. Stelios Tsafarakis, 2016. "Redesigning product lines in a period of economic crisis: a hybrid simulated annealing algorithm with crossover," Annals of Operations Research, Springer, vol. 247(2), pages 617-633, December.
    11. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    12. Dimitris Bertsimas & Velibor V. Mišić, 2017. "Robust Product Line Design," Operations Research, INFORMS, vol. 65(1), pages 19-37, February.
    13. Schön, Cornelia, 2010. "On the product line selection problem under attraction choice models of consumer behavior," European Journal of Operational Research, Elsevier, vol. 206(1), pages 260-264, October.
    14. Winfried J. Steiner & Harald Hruschka, 2002. "Produktliniengestaltung mit Genetischen Algorithmen," Schmalenbach Journal of Business Research, Springer, vol. 54(7), pages 575-601, November.
    15. Alexouda, Georgia & Paparrizos, Konstantinos, 2001. "A genetic algorithm approach to the product line design problem using the seller's return criterion: An extensive comparative computational study," European Journal of Operational Research, Elsevier, vol. 134(1), pages 165-178, October.
    16. Maoqi Liu & Li Zheng & Changchun Liu & Zhi‐Hai Zhang, 2023. "From share of choice to buyers' welfare maximization: Bridging the gap through distributionally robust optimization," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1205-1222, April.
    17. Lacourbe, Paul, 2012. "A model of product line design and introduction sequence with reservation utility," European Journal of Operational Research, Elsevier, vol. 220(2), pages 338-348.
    18. Dimitris Bertsimas & Velibor V. Mišić, 2017. "Robust Product Line Design," Operations Research, INFORMS, vol. 65(1), pages 19-37, February.
    19. Leyuan Shi & Sigurdur Ólafsson & Qun Chen, 2001. "An Optimization Framework for Product Design," Management Science, INFORMS, vol. 47(12), pages 1681-1692, December.
    20. Wang, Xinfang (Jocelyn) & Curry, David J., 2012. "A robust approach to the share-of-choice product design problem," Omega, Elsevier, vol. 40(6), pages 818-826.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:287:y:2020:i:3:p:1161-1169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.