IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v275y2019i3p897-915.html
   My bibliography  Save this article

Liner shipping service scheduling and cargo allocation

Author

Listed:
  • Koza, David Franz

Abstract

Tactical service scheduling and operational cargo allocation are two interdependent problems in liner shipping. The schedules and sailing speeds of individual liner shipping services and the synchronization among all services determine the transit times of containers through a liner shipping network. On the other hand, the market demand in terms of container volume and expected transit times between origin and destination ports drive the schedule design of liner shipping services. We present a graph-based model and a branch-and-price algorithm to solve the combined problem. The goal is to minimize the difference between fuel consumption costs and revenues from transporting containers under consideration of transit time limits. Fuel consumption is modeled as a function of both speed and payload. Results are presented for 12 liner shipping networks and emphasize the importance of explicitly modeling schedules in large networks; transshipment times and thus transit times may be severely miscalculated otherwise. The results further show that neglecting payload in the fuel consumption function can result in suboptimal service schedules and cargo routing decisions.

Suggested Citation

  • Koza, David Franz, 2019. "Liner shipping service scheduling and cargo allocation," European Journal of Operational Research, Elsevier, vol. 275(3), pages 897-915.
  • Handle: RePEc:eee:ejores:v:275:y:2019:i:3:p:897-915
    DOI: 10.1016/j.ejor.2018.12.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171831049X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.12.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    2. Karsten, Christian Vad & Brouer, Berit Dangaard & Desaulniers, Guy & Pisinger, David, 2017. "Time constrained liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 152-162.
    3. Christian Va Karsten & Stefan Ropke & David Pisinger, 2018. "Simultaneous Optimization of Container Ship Sailing Speed and Container Routing with Transit Time Restrictions," Transportation Science, INFORMS, vol. 52(4), pages 769-787, August.
    4. François Vanderbeck, 2005. "Implementing Mixed Integer Column Generation," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 331-358, Springer.
    5. Jun Xia & Kevin X. Li & Hong Ma & Zhou Xu, 2015. "Joint Planning of Fleet Deployment, Speed Optimization, and Cargo Allocation for Liner Shipping," Transportation Science, INFORMS, vol. 49(4), pages 922-938, November.
    6. Guericke, Stefan & Tierney, Kevin, 2015. "Liner shipping cargo allocation with service levels and speed optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 40-60.
    7. Villeneuve, Daniel & Desaulniers, Guy, 2005. "The shortest path problem with forbidden paths," European Journal of Operational Research, Elsevier, vol. 165(1), pages 97-107, August.
    8. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    9. Karsten, Christian Vad & Pisinger, David & Ropke, Stefan & Brouer, Berit Dangaard, 2015. "The time constrained multi-commodity network flow problem and its application to liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 122-138.
    10. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    11. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    12. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    13. Reinhardt, Line Blander & Plum, Christian E.M. & Pisinger, David & Sigurd, Mikkel M. & Vial, Guillaume T.P., 2016. "The liner shipping berth scheduling problem with transit times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 116-128.
    14. Harilaos N. Psaraftis & Christos A. Kontovas, 2016. "Green Maritime Transportation: Speed and Route Optimization," International Series in Operations Research & Management Science, in: Harilaos N. Psaraftis (ed.), Green Transportation Logistics, edition 127, chapter 0, pages 299-349, Springer.
    15. Dennis Huisman & Raf Jans & Marc Peeters & Albert P.M. Wagelmans, 2005. "Combining Column Generation and Lagrangian Relaxation," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 247-270, Springer.
    16. Berit D. Brouer & J. Fernando Alvarez & Christian E. M. Plum & David Pisinger & Mikkel M. Sigurd, 2014. "A Base Integer Programming Model and Benchmark Suite for Liner-Shipping Network Design," Transportation Science, INFORMS, vol. 48(2), pages 281-312, May.
    17. Wang, Shuaian & Meng, Qiang, 2012. "Sailing speed optimization for container ships in a liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 701-714.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Zhuge & Shuaian Wang & Lu Zhen & Gilbert Laporte, 2021. "Subsidy design in a vessel speed reduction incentive program under government policies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 344-358, April.
    2. Hellsten, Erik Orm & Sacramento, David & Pisinger, David, 2022. "A branch-and-price algorithm for solving the single-hub feeder network design problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 902-916.
    3. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Hu, Shu & Yu, Dennis Z. & Fu, Ke, 2023. "Online platforms’ warehouse capacity allocation strategies for multiple products," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    5. Ming Liu & Rongfan Liu & E Zhang & Chengbin Chu, 2022. "Eco-friendly container transshipment route scheduling problem with repacking operations," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1010-1035, July.
    6. Song, Zhuzhu & Tang, Wansheng & Zhao, Ruiqing, 2020. "A simple game theoretical analysis for incentivizing multi-modal transportation in freight supply chains," European Journal of Operational Research, Elsevier, vol. 283(1), pages 152-165.
    7. Yuzhe Zhao & Yujun Fan & Jingmiao Zhou & Haibo Kuang, 2019. "Bi-Objective Optimization of Vessel Speed and Route for Sustainable Coastal Shipping under the Regulations of Emission Control Areas," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    8. Trivella, Alessio & Corman, Francesco & Koza, David F. & Pisinger, David, 2021. "The multi-commodity network flow problem with soft transit time constraints: Application to liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    9. Ming Liu & Rongfan Liu & E Zhang & Chengbin Chu, 0. "Eco-friendly container transshipment route scheduling problem with repacking operations," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-26.
    10. Zhuge, Dan & Wang, Shuaian & Wang, David Z.W., 2021. "A joint liner ship path, speed and deployment problem under emission reduction measures," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 155-173.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David F. Koza & Guy Desaulniers & Stefan Ropke, 2020. "Integrated Liner Shipping Network Design and Scheduling," Transportation Science, INFORMS, vol. 54(2), pages 512-533, March.
    2. Reinhardt, Line Blander & Pisinger, David & Sigurd, Mikkel M. & Ahmt, Jonas, 2020. "Speed optimizations for liner networks with business constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1127-1140.
    3. Christian Va Karsten & Stefan Ropke & David Pisinger, 2018. "Simultaneous Optimization of Container Ship Sailing Speed and Container Routing with Transit Time Restrictions," Transportation Science, INFORMS, vol. 52(4), pages 769-787, August.
    4. Yadong Wang & Qiang Meng & Haibo Kuang, 2019. "Intercontinental Liner Shipping Service Design," Transportation Science, INFORMS, vol. 53(2), pages 344-364, March.
    5. Karsten, Christian Vad & Pisinger, David & Ropke, Stefan & Brouer, Berit Dangaard, 2015. "The time constrained multi-commodity network flow problem and its application to liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 122-138.
    6. Wetzel, Daniel & Tierney, Kevin, 2020. "Integrating fleet deployment into liner shipping vessel repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    7. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
    8. Christiansen, Marielle & Hellsten, Erik & Pisinger, David & Sacramento, David & Vilhelmsen, Charlotte, 2020. "Liner shipping network design," European Journal of Operational Research, Elsevier, vol. 286(1), pages 1-20.
    9. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    10. Massimo Giovannini & Harilaos N. Psaraftis, 2019. "The profit maximizing liner shipping problem with flexible frequencies: logistical and environmental considerations," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 567-597, September.
    11. Lee, Chung-Yee & Lee, Hau L. & Zhang, Jiheng, 2015. "The impact of slow ocean steaming on delivery reliability and fuel consumption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 176-190.
    12. Berit Dangaard Brouer & Christian Vad Karsten & David Pisinger, 2018. "Optimization in liner shipping," Annals of Operations Research, Springer, vol. 271(1), pages 205-236, December.
    13. Zhen, Lu & Shen, Tao & Wang, Shuaian & Yu, Shucheng, 2016. "Models on ship scheduling in transshipment hubs with considering bunker cost," International Journal of Production Economics, Elsevier, vol. 173(C), pages 111-121.
    14. Ricardo Fukasawa & Qie He & Fernando Santos & Yongjia Song, 2018. "A Joint Vehicle Routing and Speed Optimization Problem," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 694-709, November.
    15. Wang, Yadong & Meng, Qiang, 2021. "Optimizing freight rate of spot market containers with uncertainties in shipping demand and available ship capacity," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 314-332.
    16. Reinhardt, Line Blander & Plum, Christian E.M. & Pisinger, David & Sigurd, Mikkel M. & Vial, Guillaume T.P., 2016. "The liner shipping berth scheduling problem with transit times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 116-128.
    17. Balakrishnan, Anantaram & Karsten, Christian Vad, 2017. "Container shipping service selection and cargo routing with transshipment limits," European Journal of Operational Research, Elsevier, vol. 263(2), pages 652-663.
    18. Trivella, Alessio & Corman, Francesco & Koza, David F. & Pisinger, David, 2021. "The multi-commodity network flow problem with soft transit time constraints: Application to liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    19. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    20. Li, Chen & Qi, Xiangtong & Song, Dongping, 2016. "Real-time schedule recovery in liner shipping service with regular uncertainties and disruption events," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 762-788.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:275:y:2019:i:3:p:897-915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.