IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v49y2015i4p922-938.html
   My bibliography  Save this article

Joint Planning of Fleet Deployment, Speed Optimization, and Cargo Allocation for Liner Shipping

Author

Listed:
  • Jun Xia

    (Department of Logistics and Maritime Studies, Hong Kong Polytechnic University, Hong Kong)

  • Kevin X. Li

    (Department of International Logistics, Chung-Ang University, Seoul 156-756, Republic of Korea)

  • Hong Ma

    (School of Management, Zhejiang University, 310058 Hangzhou, China)

  • Zhou Xu

    (Department of Logistics and Maritime Studies, Hong Kong Polytechnic University, Hong Kong)

Abstract

In this paper, we study a comprehensive model that addresses fleet deployment, speed optimization, and cargo allocation jointly, so as to maximize total profits at the strategic level. Our model considers a general fuel consumption function that depends on speed and load. To overcome intractability caused by nonlinear terms, we further separate fuel cost into two terms associated with ship speed and load to obtain a mixed integer linear programming formulation for approximation. Based on column generation techniques, we develop an iterative search algorithm that adaptively reorganizes the approximated formulation. We conduct extensive experiments using generated data sets from actual liner shipping services in different regions of the world to show the effectiveness of our approach as well as the significant impact of speed-load factors on fuel consumptions. Managerial insights are obtained by testing the model under different scenarios, which may greatly assist decision makers in the liner shipping industry.

Suggested Citation

  • Jun Xia & Kevin X. Li & Hong Ma & Zhou Xu, 2015. "Joint Planning of Fleet Deployment, Speed Optimization, and Cargo Allocation for Liner Shipping," Transportation Science, INFORMS, vol. 49(4), pages 922-938, November.
  • Handle: RePEc:inm:ortrsc:v:49:y:2015:i:4:p:922-938
    DOI: 10.1287/trsc.2015.0625
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2015.0625
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2015.0625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mulder, Judith & Dekker, Rommert, 2014. "Methods for strategic liner shipping network design," European Journal of Operational Research, Elsevier, vol. 235(2), pages 367-377.
    2. Meng, Qiang & Wang, Shuaian, 2011. "Optimal operating strategy for a long-haul liner service route," European Journal of Operational Research, Elsevier, vol. 215(1), pages 105-114, November.
    3. Magirou, Evangelos F. & Psaraftis, Harilaos N. & Bouritas, Theodore, 2015. "The economic speed of an oceangoing vessel in a dynamic setting," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 48-67.
    4. Richa Agarwal & Özlem Ergun, 2008. "Ship Scheduling and Network Design for Cargo Routing in Liner Shipping," Transportation Science, INFORMS, vol. 42(2), pages 175-196, May.
    5. Ronen, David, 1993. "Ship scheduling: The last decade," European Journal of Operational Research, Elsevier, vol. 71(3), pages 325-333, December.
    6. B. J. Powell & A .N. Perkins, 1997. "Fleet deployment optimization for liner shipping: an integer programming model," Maritime Policy & Management, Taylor & Francis Journals, vol. 24(2), pages 183-192, January.
    7. Xinxin Liu & Heng-Qing Ye & Xue-Ming Yuan, 2011. "Tactical planning models for managing container flow and ship deployment," Maritime Policy & Management, Taylor & Francis Journals, vol. 38(5), pages 487-508, September.
    8. K Fagerholt & G Laporte & I Norstad, 2010. "Reducing fuel emissions by optimizing speed on shipping routes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 523-529, March.
    9. Christos Kontovas & Harilaos N. Psaraftis, 2011. "Reduction of emissions along the maritime intermodal container chain: operational models and policies," Maritime Policy & Management, Taylor & Francis Journals, vol. 38(4), pages 451-469, March.
    10. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    11. Gelareh, Shahin & Pisinger, David, 2011. "Fleet deployment, network design and hub location of liner shipping companies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 947-964.
    12. D Ronen, 2011. "The effect of oil price on containership speed and fleet size," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 211-216, January.
    13. Notteboom, Theo E. & Vernimmen, Bert, 2009. "The effect of high fuel costs on liner service configuration in container shipping," Journal of Transport Geography, Elsevier, vol. 17(5), pages 325-337.
    14. Gelareh, Shahin & Meng, Qiang, 2010. "A novel modeling approach for the fleet deployment problem within a short-term planning horizon," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 76-89, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    2. Manuel Herrera & Per J. Agrell & Casiano Manrique-de-Lara-Peñate & Lourdes Trujillo, 2017. "Vessel capacity restrictions in the fleet deployment problem: an application to the Panama Canal," Annals of Operations Research, Springer, vol. 253(2), pages 845-869, June.
    3. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    4. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship fleet deployment with container transshipment operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 470-484.
    5. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    6. Wang, Shuaian & Meng, Qiang, 2012. "Sailing speed optimization for container ships in a liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 701-714.
    7. Qi, Xiangtong & Song, Dong-Ping, 2012. "Minimizing fuel emissions by optimizing vessel schedules in liner shipping with uncertain port times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 863-880.
    8. Nguyen Khoi Tran & Hans-Dietrich Haasis & Tobias Buer, 2017. "Container shipping route design incorporating the costs of shipping, inland/feeder transport, inventory and CO2 emission," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(4), pages 667-694, December.
    9. Meng, Qiang & Wang, Shuaian, 2012. "Liner ship fleet deployment with week-dependent container shipment demand," European Journal of Operational Research, Elsevier, vol. 222(2), pages 241-252.
    10. Wang, Shuaian & Meng, Qiang & Sun, Zhuo, 2013. "Container routing in liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 1-7.
    11. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
    12. Reinhardt, Line Blander & Plum, Christian E.M. & Pisinger, David & Sigurd, Mikkel M. & Vial, Guillaume T.P., 2016. "The liner shipping berth scheduling problem with transit times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 116-128.
    13. Meng, Qiang & Du, Yuquan & Wang, Yadong, 2016. "Shipping log data based container ship fuel efficiency modeling," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 207-229.
    14. Christiansen, Marielle & Hellsten, Erik & Pisinger, David & Sacramento, David & Vilhelmsen, Charlotte, 2020. "Liner shipping network design," European Journal of Operational Research, Elsevier, vol. 286(1), pages 1-20.
    15. Wang, Shuaian, 2016. "Fundamental properties and pseudo-polynomial-time algorithm for network containership sailing speed optimization," European Journal of Operational Research, Elsevier, vol. 250(1), pages 46-55.
    16. Christian Va Karsten & Stefan Ropke & David Pisinger, 2018. "Simultaneous Optimization of Container Ship Sailing Speed and Container Routing with Transit Time Restrictions," Transportation Science, INFORMS, vol. 52(4), pages 769-787, August.
    17. Berit Dangaard Brouer & Christian Vad Karsten & David Pisinger, 2018. "Optimization in liner shipping," Annals of Operations Research, Springer, vol. 271(1), pages 205-236, December.
    18. Dong, Jing-Xin & Lee, Chung-Yee & Song, Dong-Ping, 2015. "Joint service capacity planning and dynamic container routing in shipping network with uncertain demands," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 404-421.
    19. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    20. He, Qie & Zhang, Xiaochen & Nip, Kameng, 2017. "Speed optimization over a path with heterogeneous arc costs," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 198-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:49:y:2015:i:4:p:922-938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.