IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v272y2019i3p1017-1027.html
   My bibliography  Save this article

A consensus-based probabilistic linguistic gained and lost dominance score method

Author

Listed:
  • Wu, Xingli
  • Liao, Huchang

Abstract

This paper proposes a comprehensive Multiple Criteria Group Decision Making (MCGDM) method with probabilistic linguistic information based on a new consensus measure and a novel outranking method, Gained and Lost Dominance Score (GLDS). Firstly, new operations of the probabilistic linguistic term sets are introduced based on the adjusted rules of probabilistic linguistic term sets and the linguistic scale functions for semantics of linguistic terms. After defining a new consensus measure based on the correlation degree between probabilistic linguistic term sets, we develop a consensus reaching method to improve the consensus degree of a group. To rank alternatives reasonably, we further propose the GLDS method which considers both the “group utility” and the “individual regret” values. The core of the GLDS is to calculate the gained and lost dominance scores that the optimal solution dominates all other alternatives in terms of the net gained dominance flow and the net lost dominance flow. Then, we integrate the GLDS ranking method with the consensus reaching process and develop a consensus-based PL-GLDS method to solve the MCGDM problems with probabilistic linguistic information. Finally, the proposed method is validated by a case study of selecting optimal green enterprises. Some comparative analyses are given to show the efficiency of the proposed method.

Suggested Citation

  • Wu, Xingli & Liao, Huchang, 2019. "A consensus-based probabilistic linguistic gained and lost dominance score method," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1017-1027.
  • Handle: RePEc:eee:ejores:v:272:y:2019:i:3:p:1017-1027
    DOI: 10.1016/j.ejor.2018.07.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718306660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.07.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Yucheng & Hong, Wei-Chiang & Xu, Yinfeng & Yu, Shui, 2013. "Numerical scales generated individually for analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 229(3), pages 654-662.
    2. Gong, Zaiwu & Zhang, Huanhuan & Forrest, Jeffrey & Li, Lianshui & Xu, Xiaoxia, 2015. "Two consensus models based on the minimum cost and maximum return regarding either all individuals or one individual," European Journal of Operational Research, Elsevier, vol. 240(1), pages 183-192.
    3. Wu, Zhibin & Xu, Jiuping, 2016. "Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations," Omega, Elsevier, vol. 65(C), pages 28-40.
    4. Dong, Qingxing & Cooper, Orrin, 2016. "A peer-to-peer dynamic adaptive consensus reaching model for the group AHP decision making," European Journal of Operational Research, Elsevier, vol. 250(2), pages 521-530.
    5. Xu, Zeshui, 2005. "Deviation measures of linguistic preference relations in group decision making," Omega, Elsevier, vol. 33(3), pages 249-254, June.
    6. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    7. Ma, Li-Ching, 2016. "A new group ranking approach for ordinal preferences based on group maximum consensus sequences," European Journal of Operational Research, Elsevier, vol. 251(1), pages 171-181.
    8. Qin, Jindong & Liu, Xinwang & Pedrycz, Witold, 2017. "An extended TODIM multi-criteria group decision making method for green supplier selection in interval type-2 fuzzy environment," European Journal of Operational Research, Elsevier, vol. 258(2), pages 626-638.
    9. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    10. Zhou, Wei & Xu, Zeshui, 2016. "Generalized asymmetric linguistic term set and its application to qualitative decision making involving risk appetites," European Journal of Operational Research, Elsevier, vol. 254(2), pages 610-621.
    11. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi & Feng, Bo, 2010. "The OWA-based consensus operator under linguistic representation models using position indexes," European Journal of Operational Research, Elsevier, vol. 203(2), pages 455-463, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roman Kaminskiy & Nataliya Shakhovska & Jana Kajanová & Yurii Kryvenchuk, 2021. "Method of Distinguishing Styles by Fractal and Statistical Indicators of the Text as a Sequence of the Number of Letters in Its Words," Mathematics, MDPI, vol. 9(19), pages 1-16, September.
    2. Namin, Farhad Samimi & Ghadi, Aliakbar & Saki, Farshad, 2022. "A literature review of Multi Criteria Decision-Making (MCDM) towards mining method selection (MMS)," Resources Policy, Elsevier, vol. 77(C).
    3. Liu, Fan & Liao, Huchang & Al-Barakati, Abdullah, 2023. "Physician selection based on user-generated content considering interactive criteria and risk preferences of patients," Omega, Elsevier, vol. 115(C).
    4. Yongming Song, 2018. "Deriving the priority weights from probabilistic linguistic preference relation with unknown probabilities," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    5. Zhi Wen & Huchang Liao & Ruxue Ren & Chunguang Bai & Edmundas Kazimieras Zavadskas & Jurgita Antucheviciene & Abdullah Al-Barakati, 2019. "Cold Chain Logistics Management of Medicine with an Integrated Multi-Criteria Decision-Making Method," IJERPH, MDPI, vol. 16(23), pages 1-21, December.
    6. Xingli Wu & Huchang Liao, 2022. "A gained and lost dominance score method with conflict analysis for green economy development evaluation," Annals of Operations Research, Springer, vol. 316(1), pages 623-655, September.
    7. Zhao, Meng & Xu, Chang & Zhao, Wenxian & Lin, Mingwei, 2023. "New energy vehicle online selection method considering attribute compensation relationship and aspiration strength," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    8. Huchang Liao & Xiaomei Mi & Zeshui Xu, 2020. "A survey of decision-making methods with probabilistic linguistic information: bibliometrics, preliminaries, methodologies, applications and future directions," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 81-134, March.
    9. Chao Song & Jian-Qiang Wang & Jun-Bo Li, 2020. "New Framework for Quality Function Deployment Using Linguistic Z-Numbers," Mathematics, MDPI, vol. 8(2), pages 1-20, February.
    10. Liao, Huchang & Wu, Xingli, 2020. "DNMA: A double normalization-based multiple aggregation method for multi-expert multi-criteria decision making," Omega, Elsevier, vol. 94(C).
    11. Min Xue & Chao Fu & Shanlin Yang, 2022. "A comparative analysis of probabilistic linguistic preference relations and distributed preference relations for decision making," Fuzzy Optimization and Decision Making, Springer, vol. 21(1), pages 71-97, March.
    12. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    13. Gong, Zaiwu & Guo, Weiwei & Herrera-Viedma, Enrique & Gong, Zejun & Wei, Guo, 2020. "Consistency and consensus modeling of linear uncertain preference relations," European Journal of Operational Research, Elsevier, vol. 283(1), pages 290-307.
    14. Gao, Jianwei & Wang, Yaping & Huang, Ningbo & Wei, Lingli & Zhang, Zixuan, 2022. "Optimal site selection study of wind-photovoltaic-shared energy storage power stations based on GIS and multi-criteria decision making: A two-stage framework," Renewable Energy, Elsevier, vol. 201(P1), pages 1139-1162.
    15. Ibrahim M. Hezam & Naga Rama Devi Vedala & Bathina Rajesh Kumar & Arunodaya Raj Mishra & Fausto Cavallaro, 2023. "Assessment of Biofuel Industry Sustainability Factors Based on the Intuitionistic Fuzzy Symmetry Point of Criterion and Rank-Sum-Based MAIRCA Method," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
    16. Sumin Yu & Zhijiao Du & Xuanhua Xu, 2021. "Hierarchical Punishment-Driven Consensus Model for Probabilistic Linguistic Large-Group Decision Making with Application to Global Supplier Selection," Group Decision and Negotiation, Springer, vol. 30(6), pages 1343-1372, December.
    17. Tang, Ming & Liao, Huchang, 2021. "From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey," Omega, Elsevier, vol. 100(C).
    18. Ran Fang & Huchang Liao, 2021. "Emergency material reserve location selection by a time-series-based evidential reasoning approach under bounded rationality," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(4), pages 1397-1417, August.
    19. Decui Liang & Zhuoyin Dai & Mingwei Wang & Jinjun Li, 2020. "Web celebrity shop assessment and improvement based on online review with probabilistic linguistic term sets by using sentiment analysis and fuzzy cognitive map," Fuzzy Optimization and Decision Making, Springer, vol. 19(4), pages 561-586, December.
    20. Tang, Ming & Liao, Huchang & Xu, Jiuping & Streimikiene, Dalia & Zheng, Xiaosong, 2020. "Adaptive consensus reaching process with hybrid strategies for large-scale group decision making," European Journal of Operational Research, Elsevier, vol. 282(3), pages 957-971.
    21. Hong-gang Peng & Jian-qiang Wang, 2020. "Multi-criteria sorting decision making based on dominance and opposition relations with probabilistic linguistic information," Fuzzy Optimization and Decision Making, Springer, vol. 19(4), pages 435-470, December.
    22. Zhi Wen & Huchang Liao, 2022. "Capturing attitudinal characteristics of decision-makers in group decision making: application to select policy recommendations to enhance supply chain resilience under COVID-19 outbreak," Operations Management Research, Springer, vol. 15(1), pages 179-194, June.
    23. Mehrbakhsh Nilashi & Abbas Mardani & Huchang Liao & Hossein Ahmadi & Azizah Abdul Manaf & Wafa Almukadi, 2019. "A Hybrid Method with TOPSIS and Machine Learning Techniques for Sustainable Development of Green Hotels Considering Online Reviews," Sustainability, MDPI, vol. 11(21), pages 1-21, October.
    24. Qianli Zhou & Hongming Mo & Yong Deng, 2020. "A New Divergence Measure of Pythagorean Fuzzy Sets Based on Belief Function and Its Application in Medical Diagnosis," Mathematics, MDPI, vol. 8(1), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    2. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    3. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    4. Zhang, Huanhuan & Kou, Gang & Peng, Yi, 2019. "Soft consensus cost models for group decision making and economic interpretations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 964-980.
    5. Yan, Hong-Bin & Ma, Tieju & Huynh, Van-Nam, 2017. "On qualitative multi-attribute group decision making and its consensus measure: A probability based perspective," Omega, Elsevier, vol. 70(C), pages 94-117.
    6. Zhang, Bowen & Dong, Yucheng & Zhang, Hengjie & Pedrycz, Witold, 2020. "Consensus mechanism with maximum-return modifications and minimum-cost feedback: A perspective of game theory," European Journal of Operational Research, Elsevier, vol. 287(2), pages 546-559.
    7. Gong, Zaiwu & Guo, Weiwei & Herrera-Viedma, Enrique & Gong, Zejun & Wei, Guo, 2020. "Consistency and consensus modeling of linear uncertain preference relations," European Journal of Operational Research, Elsevier, vol. 283(1), pages 290-307.
    8. María Pilar de la Cruz López & Juan José Cartelle Barros & Alfredo del Caño Gochi & Manuel Lara Coira, 2021. "New Approach for Managing Sustainability in Projects," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    9. González-Arteaga, T. & Alcantud, J.C.R. & de Andrés Calle, R., 2016. "A cardinal dissensus measure based on the Mahalanobis distance," European Journal of Operational Research, Elsevier, vol. 251(2), pages 575-585.
    10. Manuel Casal-Guisande & Alberto Comesaña-Campos & Alejandro Pereira & José-Benito Bouza-Rodríguez & Jorge Cerqueiro-Pequeño, 2022. "A Decision-Making Methodology Based on Expert Systems Applied to Machining Tools Condition Monitoring," Mathematics, MDPI, vol. 10(3), pages 1-30, February.
    11. Tang, Ming & Liao, Huchang, 2021. "From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey," Omega, Elsevier, vol. 100(C).
    12. Roman Vavrek, 2019. "Evaluation of the Impact of Selected Weighting Methods on the Results of the TOPSIS Technique," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1821-1843, November.
    13. Jun Liu & Xianbin Wu & Shouzhen Zeng & Tiejun Pan, 2017. "Intuitionistic Linguistic Multiple Attribute Decision-Making with Induced Aggregation Operator and Its Application to Low Carbon Supplier Selection," IJERPH, MDPI, vol. 14(12), pages 1-12, November.
    14. Hernandez-Perdomo, Elvis A. & Mun, Johnathan & Rocco S., Claudio M., 2017. "Active management in state-owned energy companies: Integrating a real options approach into multicriteria analysis to make companies sustainable," Applied Energy, Elsevier, vol. 195(C), pages 487-502.
    15. Ishizaka, Alessio & Nemery, Philippe & Lidouh, Karim, 2013. "Location selection for the construction of a casino in the Greater London region: A triple multi-criteria approach," Tourism Management, Elsevier, vol. 34(C), pages 211-220.
    16. Xue, Min & Fu, Chao & Yang, Shan-Lin, 2020. "Group consensus reaching based on a combination of expert weight and expert reliability," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    17. Sumin Yu & Zhijiao Du & Xuanhua Xu, 2021. "Hierarchical Punishment-Driven Consensus Model for Probabilistic Linguistic Large-Group Decision Making with Application to Global Supplier Selection," Group Decision and Negotiation, Springer, vol. 30(6), pages 1343-1372, December.
    18. Min Xue & Chao Fu & Shan-Lin Yang, 2021. "Dynamic Expert Reliability Based Feedback Mechanism in Consensus Reaching Process with Distributed Preference Relations," Group Decision and Negotiation, Springer, vol. 30(2), pages 341-375, April.
    19. Llamazares, Bonifacio, 2018. "An analysis of the generalized TODIM method," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1041-1049.
    20. Labella, Álvaro & Liu, Hongbin & Rodríguez, Rosa M. & Martínez, Luis, 2020. "A Cost Consensus Metric for Consensus Reaching Processes based on a comprehensive minimum cost model," European Journal of Operational Research, Elsevier, vol. 281(2), pages 316-331.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:272:y:2019:i:3:p:1017-1027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.