IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v259y2017i3p906-916.html
   My bibliography  Save this article

Integrated production and distribution scheduling with a perishable product

Author

Listed:
  • Devapriya, Priyantha
  • Ferrell, William
  • Geismar, Neil

Abstract

This research focuses on the practical problem of a perishable product that must be produced and distributed before it becomes unusable but at minimum cost. The problem has some features of the integrated production and distribution scheduling problem in that we seek to determine the fleet size and the trucks’ routes subject to a planning horizon constraint. In particular, this research differs because the product has a limited lifetime, the total demand must be satisfied within a planning horizon, multiple trucks can be used, and the production schedule and the distribution sequence are considered. A mixed integer programming model is formulated to solve the problem and, then, heuristics based on evolutionary algorithms are provided to resolve the models.

Suggested Citation

  • Devapriya, Priyantha & Ferrell, William & Geismar, Neil, 2017. "Integrated production and distribution scheduling with a perishable product," European Journal of Operational Research, Elsevier, vol. 259(3), pages 906-916.
  • Handle: RePEc:eee:ejores:v:259:y:2017:i:3:p:906-916
    DOI: 10.1016/j.ejor.2016.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171630755X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beasley, JE, 1983. "Route first--Cluster second methods for vehicle routing," Omega, Elsevier, vol. 11(4), pages 403-408.
    2. Zhi-Long Chen & Guruprasad Pundoor, 2006. "Order Assignment and Scheduling in a Supply Chain," Operations Research, INFORMS, vol. 54(3), pages 555-572, June.
    3. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    4. Lee, Jongsung & Kim, Byung-In & Johnson, Andrew L. & Lee, Kiho, 2014. "The nuclear medicine production and delivery problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 461-472.
    5. Li, Chung-Lun & Vairaktarakis, George & Lee, Chung-Yee, 2005. "Machine scheduling with deliveries to multiple customer locations," European Journal of Operational Research, Elsevier, vol. 164(1), pages 39-51, July.
    6. Zhi-Long Chen, 2010. "Integrated Production and Outbound Distribution Scheduling: Review and Extensions," Operations Research, INFORMS, vol. 58(1), pages 130-148, February.
    7. R. H. King & R. R. Love, 1980. "Coordinating Decisions for Increased Profits," Interfaces, INFORMS, vol. 10(6), pages 4-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Yao & Shenjun Zhu & Yanhui Li, 2022. "Green Vehicle-Routing Problem of Fresh Agricultural Products Considering Carbon Emission," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    2. Li, Mingxing & Huang, George Q., 2021. "Production-intralogistics synchronization of industry 4.0 flexible assembly lines under graduation intelligent manufacturing system," International Journal of Production Economics, Elsevier, vol. 241(C).
    3. Alexis Robbes & Yannick Kergosien & Virginie André & Jean-Charles Billaut, 2022. "Efficient heuristics to minimize the total tardiness of chemotherapy drug production and delivery," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 785-820, September.
    4. Zelin Wang & Xiaoning Wei & Jiansheng Pan, 2021. "Research on IRP of Perishable Products Based on Mobile Data Sharing Environment," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 15(2), pages 139-157, April.
    5. Martha-Selene Casas-Ramírez & José-Fernando Camacho-Vallejo & Rosa G. González-Ramírez & José-Antonio Marmolejo-Saucedo & José-Manuel Velarde-Cantú, 2018. "Optimizing a Biobjective Production-Distribution Planning Problem Using a GRASP," Complexity, Hindawi, vol. 2018, pages 1-13, February.
    6. Babaee, Sara & Araghi, Mojtaba & Rostami, Borzou, 2022. "Coordinating transportation and pricing policies for perishable products," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 105-125.
    7. Liu, Wenqian & Ke, Ginger Y. & Chen, Jian & Zhang, Lianmin, 2020. "Scheduling the distribution of blood products: A vendor-managed inventory routing approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    8. Jakub Sikora & Marcin Niemiec & Anna Szeląg-Sikora & Zofia Gródek-Szostak & Maciej Kuboń & Monika Komorowska, 2020. "The Impact of a Controlled-Release Fertilizer on Greenhouse Gas Emissions and the Efficiency of the Production of Chinese Cabbage," Energies, MDPI, vol. 13(8), pages 1-14, April.
    9. Wenzhu Liao & Tong Wang, 2019. "A Novel Collaborative Optimization Model for Job Shop Production–Delivery Considering Time Window and Carbon Emission," Sustainability, MDPI, vol. 11(10), pages 1-27, May.
    10. Zelin Wang & Xiaoning Wei & Jiansheng Pan, 2021. "Research on IRP of Perishable Products Based on Mobile Data Sharing Environment," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 15(2), pages 5-23, April.
    11. Bachtenkirch, David & Bock, Stefan, 2022. "Finding efficient make-to-order production and batch delivery schedules," European Journal of Operational Research, Elsevier, vol. 297(1), pages 133-152.
    12. Amin Gharehyakheh & Caroline C. Krejci & Jaime Cantu & K. Jamie Rogers, 2020. "A Multi-Objective Model for Sustainable Perishable Food Distribution Considering the Impact of Temperature on Vehicle Emissions and Product Shelf Life," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    13. Ling Liu & Sen Liu, 2020. "Integrated Production and Distribution Problem of Perishable Products with a Minimum Total Order Weighted Delivery Time," Mathematics, MDPI, vol. 8(2), pages 1-18, January.
    14. Olga Lingaitienė & Juozas Merkevičius & Vida Davidavičienė, 2021. "The Model of Vehicle and Route Selection for Energy Saving," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    15. Wang, Zheng, 2018. "Delivering meals for multiple suppliers: Exclusive or sharing logistics service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 496-512.
    16. Naim Rashidov & Maciej Chowaniak & Marcin Niemiec & Gulov Saidali Mamurovich & Masaidov Jamshed Gufronovich & Zofia Gródek-Szostak & Anna Szeląg-Sikora & Jakub Sikora & Maciej Kuboń & Monika Komorowsk, 2021. "Assessment of the Multiannual Impact of the Grape Training System on GHG Emissions in North Tajikistan," Energies, MDPI, vol. 14(19), pages 1-13, September.
    17. Mohit Malik & Vijay Kumar Gahlawat & Rahul S Mor & Vijay Dahiya & Mukheshwar Yadav, 2022. "Application of Optimization Techniques in the Dairy Supply Chain: A Systematic Review," Logistics, MDPI, vol. 6(4), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ling Liu & Sen Liu, 2020. "Integrated Production and Distribution Problem of Perishable Products with a Minimum Total Order Weighted Delivery Time," Mathematics, MDPI, vol. 8(2), pages 1-18, January.
    2. Azeddine Cheref & Alessandro Agnetis & Christian Artigues & Jean-Charles Billaut, 2017. "Complexity results for an integrated single machine scheduling and outbound delivery problem with fixed sequence," Journal of Scheduling, Springer, vol. 20(6), pages 681-693, December.
    3. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    4. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    5. Lee, Jongsung & Kim, Byung-In & Johnson, Andrew L. & Lee, Kiho, 2014. "The nuclear medicine production and delivery problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 461-472.
    6. Zhong, Xueling & Fan, Jie & Ou, Jinwen, 2022. "Coordinated scheduling of the outsourcing, in-house production and distribution operations," European Journal of Operational Research, Elsevier, vol. 302(2), pages 427-437.
    7. Lixin Tang & Feng Li & Jiyin Liu, 2015. "Integrated scheduling of loading and transportation with tractors and semitrailers separated," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(5), pages 416-433, August.
    8. Gao, Su & Qi, Lian & Lei, Lei, 2015. "Integrated batch production and distribution scheduling with limited vehicle capacity," International Journal of Production Economics, Elsevier, vol. 160(C), pages 13-25.
    9. Lixin Tang & Feng Li & Zhi-Long Chen, 2019. "Integrated Scheduling of Production and Two-Stage Delivery of Make-to-Order Products: Offline and Online Algorithms," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 493-514, July.
    10. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    11. Liang Tang & Zhihong Jin & Xuwei Qin & Ke Jing, 2019. "Supply chain scheduling in a collaborative manufacturing mode: model construction and algorithm design," Annals of Operations Research, Springer, vol. 275(2), pages 685-714, April.
    12. Glize, Estèle & Roberti, Roberto & Jozefowiez, Nicolas & Ngueveu, Sandra Ulrich, 2020. "Exact methods for mono-objective and Bi-Objective Multi-Vehicle Covering Tour Problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 812-824.
    13. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.
    14. Manuel Ostermeier & Andreas Holzapfel & Heinrich Kuhn & Daniel Schubert, 2022. "Integrated zone picking and vehicle routing operations with restricted intermediate storage," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 795-832, September.
    15. Daniel Schubert & André Scholz & Gerhard Wäscher, 2017. "Integrated Order Picking and Vehicle Routing with Due Dates," FEMM Working Papers 170007, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    16. Sun, Xuting & Chung, Sai-Ho & Choi, Tsan-Ming & Sheu, Jiuh-Biing & Ma, Hoi Lam, 2020. "Combating lead-time uncertainty in global supply chain's shipment-assignment: Is it wise to be risk-averse?," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 406-434.
    17. Jang, Wooseung & Kim, Daeki & Park, Kwangtae, 2013. "Inventory allocation and shipping when demand temporarily exceeds production capacity," European Journal of Operational Research, Elsevier, vol. 227(3), pages 464-470.
    18. Kergosien, Y. & Gendreau, M. & Billaut, J.-C., 2017. "A Benders decomposition-based heuristic for a production and outbound distribution scheduling problem with strict delivery constraints," European Journal of Operational Research, Elsevier, vol. 262(1), pages 287-298.
    19. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    20. Chevroton, Hugo & Kergosien, Yannick & Berghman, Lotte & Billaut, Jean-Charles, 2021. "Solving an integrated scheduling and routing problem with inventory, routing and penalty costs," European Journal of Operational Research, Elsevier, vol. 294(2), pages 571-589.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:259:y:2017:i:3:p:906-916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.