IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v257y2017i3p834-844.html
   My bibliography  Save this article

Scheduling identical parallel machines with tooling constraints

Author

Listed:
  • Beezão, Andreza Cristina
  • Cordeau, Jean-François
  • Laporte, Gilbert
  • Yanasse, Horacio Hideki

Abstract

We model and solve the problem of sequencing a set of jobs with specified processing times and tool requirements on a set of identical parallel machines. Decisions concern the assignment of jobs to machines, their sequencing, and the allocation of tools on each machine. The objective function minimizes the makespan. We propose two mathematical formulations of the problem and an adaptive large neighborhood search metaheuristic in which the destroy and repair operators exploit the structures of two well-known and related combinatorial optimization problems, namely the parallel machine scheduling problem and the job sequencing and tool switching problem on a single machine. Computational experiments conducted on two data sets of 1440 instances show that our algorithm produces excellent results and outperforms existing heuristics.

Suggested Citation

  • Beezão, Andreza Cristina & Cordeau, Jean-François & Laporte, Gilbert & Yanasse, Horacio Hideki, 2017. "Scheduling identical parallel machines with tooling constraints," European Journal of Operational Research, Elsevier, vol. 257(3), pages 834-844.
  • Handle: RePEc:eee:ejores:v:257:y:2017:i:3:p:834-844
    DOI: 10.1016/j.ejor.2016.08.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716306233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.08.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allahverdi, Ali, 2015. "The third comprehensive survey on scheduling problems with setup times/costs," European Journal of Operational Research, Elsevier, vol. 246(2), pages 345-378.
    2. Kathryn E. Stecke, 1983. "Formulation and Solution of Nonlinear Integer Production Planning Problems for Flexible Manufacturing Systems," Management Science, INFORMS, vol. 29(3), pages 273-288, March.
    3. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    4. Ann E. Gray & Abraham Seidmann & Kathryn E. Stecke, 1993. "A Synthesis of Decision Models for Tool Management in Automated Manufacturing," Management Science, INFORMS, vol. 39(5), pages 549-567, May.
    5. Muller, Laurent Flindt & Spoorendonk, Simon & Pisinger, David, 2012. "A hybrid adaptive large neighborhood search heuristic for lot-sizing with setup times," European Journal of Operational Research, Elsevier, vol. 218(3), pages 614-623.
    6. Mohamed, Zubair M. & Bernardo, John J., 1997. "Tool planning models for flexible manufacturing systems," European Journal of Operational Research, Elsevier, vol. 103(3), pages 497-514, December.
    7. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    8. Gendreau, Michel & Laporte, Gilbert & Guimaraes, Eduardo Morais, 2001. "A divide and merge heuristic for the multiprocessor scheduling problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 133(1), pages 183-189, August.
    9. Atan, Tankut S. & Pandit, Ram, 1996. "Auxiliary tool allocation in flexible manufacturing systems," European Journal of Operational Research, Elsevier, vol. 89(3), pages 642-659, March.
    10. Christopher S. Tang & Eric V. Denardo, 1988. "Models Arising from a Flexible Manufacturing Machine, Part I: Minimization of the Number of Tool Switches," Operations Research, INFORMS, vol. 36(5), pages 767-777, October.
    11. Catanzaro, Daniele & Gouveia, Luis & Labbé, Martine, 2015. "Improved integer linear programming formulations for the job Sequencing and tool Switching Problem," European Journal of Operational Research, Elsevier, vol. 244(3), pages 766-777.
    12. Mohammed Berrada & Kathryn E. Stecke, 1986. "A Branch and Bound Approach for Machine Load Balancing in Flexible Manufacturing Systems," Management Science, INFORMS, vol. 32(10), pages 1316-1335, October.
    13. S. S. Panwalkar & Wafik Iskander, 1977. "A Survey of Scheduling Rules," Operations Research, INFORMS, vol. 25(1), pages 45-61, February.
    14. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2012. "An adaptive large neighborhood search heuristic for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 346-359.
    15. Crama, Yves, 1997. "Combinatorial optimization models for production scheduling in automated manufacturing systems," European Journal of Operational Research, Elsevier, vol. 99(1), pages 136-153, May.
    16. Nait Tahar, Djamel & Yalaoui, Farouk & Chu, Chengbin & Amodeo, Lionel, 2006. "A linear programming approach for identical parallel machine scheduling with job splitting and sequence-dependent setup times," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 63-73, February.
    17. Koulamas, Christos & Kyparisis, George J., 2009. "A modified LPT algorithm for the two uniform parallel machine makespan minimization problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 61-68, July.
    18. Van Hop, Nguyen & Nagarur, Nagendra N., 2004. "The scheduling problem of PCBs for multiple non-identical parallel machines," European Journal of Operational Research, Elsevier, vol. 158(3), pages 577-594, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calmels, Dorothea, 2022. "An iterated local search procedure for the job sequencing and tool switching problem with non-identical parallel machines," European Journal of Operational Research, Elsevier, vol. 297(1), pages 66-85.
    2. Soares, Leonardo Cabral R. & Carvalho, Marco Antonio M., 2020. "Biased random-key genetic algorithm for scheduling identical parallel machines with tooling constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 955-964.
    3. Yantong Li & Jean-François Côté & Leandro Callegari-Coelho & Peng Wu, 2022. "Novel Formulations and Logic-Based Benders Decomposition for the Integrated Parallel Machine Scheduling and Location Problem," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1048-1069, March.
    4. Dang, Quang-Vinh & van Diessen, Thijs & Martagan, Tugce & Adan, Ivo, 2021. "A matheuristic for parallel machine scheduling with tool replacements," European Journal of Operational Research, Elsevier, vol. 291(2), pages 640-660.
    5. Sunil Prayagi & Padma Lalitha Mareddy & Lakshmi Narasimhamu Katta & Sivarami Reddy Narapureddy, 2023. "Optimum Scheduling of a Multi-Machine Flexible Manufacturing System Considering Job and Tool Transfer Times without Tool Delay," Mathematics, MDPI, vol. 11(19), pages 1-37, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soares, Leonardo Cabral R. & Carvalho, Marco Antonio M., 2020. "Biased random-key genetic algorithm for scheduling identical parallel machines with tooling constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 955-964.
    2. Furrer, Martina & Mütze, Torsten, 2017. "An algorithmic framework for tool switching problems with multiple objectives," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1003-1016.
    3. M. Selim Akturk & Jay B. Ghosh & Evrim D. Gunes, 2003. "Scheduling with tool changes to minimize total completion time: A study of heuristics and their performance," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(1), pages 15-30, February.
    4. Crama, Yves, 1997. "Combinatorial optimization models for production scheduling in automated manufacturing systems," European Journal of Operational Research, Elsevier, vol. 99(1), pages 136-153, May.
    5. Vadlamani, Satish & Hosseini, Seyedmohsen, 2014. "A novel heuristic approach for solving aircraft landing problem with single runway," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 144-148.
    6. Calmels, Dorothea, 2022. "An iterated local search procedure for the job sequencing and tool switching problem with non-identical parallel machines," European Journal of Operational Research, Elsevier, vol. 297(1), pages 66-85.
    7. Matzliach, Barouch & Tzur, Michal, 2000. "Storage management of items in two levels of availability," European Journal of Operational Research, Elsevier, vol. 121(2), pages 363-379, March.
    8. Seokgi Lee & Mona Issabakhsh & Hyun Woo Jeon & Seong Wook Hwang & Byung Chung, 2020. "Idle time and capacity control for a single machine scheduling problem with dynamic electricity pricing," Operations Management Research, Springer, vol. 13(3), pages 197-217, December.
    9. Konak, Abdullah & Kulturel-Konak, Sadan & Azizoglu, Meral, 2008. "Minimizing the number of tool switching instants in Flexible Manufacturing Systems," International Journal of Production Economics, Elsevier, vol. 116(2), pages 298-307, December.
    10. Atan, Tankut S. & Pandit, Ram, 1996. "Auxiliary tool allocation in flexible manufacturing systems," European Journal of Operational Research, Elsevier, vol. 89(3), pages 642-659, March.
    11. Sodhi, Manbir S. & Lamond, Bernard F. & Gautier, Antoine & Noel, Martin, 2001. "Heuristics for determining economic processing rates in a flexible manufacturing system," European Journal of Operational Research, Elsevier, vol. 129(1), pages 105-115, February.
    12. Akturk, M. Selim & Avci, Selcuk, 1996. "Tool allocation and machining conditions optimization for CNC machines," European Journal of Operational Research, Elsevier, vol. 94(2), pages 335-348, October.
    13. Raduly-Baka, Csaba & Nevalainen, Olli S., 2015. "The modular tool switching problem," European Journal of Operational Research, Elsevier, vol. 242(1), pages 100-106.
    14. Renato de Matta & Vernon Ning Hsu & Timothy J. Lowe, 1999. "Capacitated selection problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(1), pages 19-37, February.
    15. Vallada, Eva & Ruiz, Rubén, 2011. "A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 211(3), pages 612-622, June.
    16. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    17. Gaalman, G. J. C. & Nawijn, W. M., 1996. "Tool sharing in parallel part production," International Journal of Production Economics, Elsevier, vol. 46(1), pages 521-533, December.
    18. Dang, Quang-Vinh & van Diessen, Thijs & Martagan, Tugce & Adan, Ivo, 2021. "A matheuristic for parallel machine scheduling with tool replacements," European Journal of Operational Research, Elsevier, vol. 291(2), pages 640-660.
    19. Crama, Yves & Moonen, Linda S. & Spieksma, Frits C.R. & Talloen, Ellen, 2007. "The tool switching problem revisited," European Journal of Operational Research, Elsevier, vol. 182(2), pages 952-957, October.
    20. Akturk, M. Selim & Ghosh, Jay B. & Gunes, Evrim D., 2004. "Scheduling with tool changes to minimize total completion time: Basic results and SPT performance," European Journal of Operational Research, Elsevier, vol. 157(3), pages 784-790, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:257:y:2017:i:3:p:834-844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.