IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v249y2016i2p683-690.html
   My bibliography  Save this article

Optimal search for parameters in Monte Carlo simulation for derivative pricing

Author

Listed:
  • Wang, Chuan-Ju
  • Kao, Ming-Yang

Abstract

This paper provides a novel and general framework for the problem of searching parameter space in Monte Carlo simulations. We propose a deterministic online algorithm and a randomized online algorithm to search for suitable parameter values for derivative pricing which are needed to achieve desired precisions. We also give the competitive ratios of the two algorithms and prove the optimality of the algorithms. Experimental results on the performance of the algorithms are presented and analyzed as well.

Suggested Citation

  • Wang, Chuan-Ju & Kao, Ming-Yang, 2016. "Optimal search for parameters in Monte Carlo simulation for derivative pricing," European Journal of Operational Research, Elsevier, vol. 249(2), pages 683-690.
  • Handle: RePEc:eee:ejores:v:249:y:2016:i:2:p:683-690
    DOI: 10.1016/j.ejor.2015.08.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715008164
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.08.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Guillaume Bernis & Emmanuel Gobet & Arturo Kohatsu‐Higa, 2003. "Monte Carlo Evaluation of Greeks for Multidimensional Barrier and Lookback Options," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 99-113, January.
    3. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    4. Daniel Wei‐Chung Miao & Yung‐Hsin Lee, 2013. "A Forward Monte Carlo Method for American Options Pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(4), pages 369-395, April.
    5. Qiang Liu, 2010. "Pricing American options by canonical least‐squares Monte Carlo," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(2), pages 175-187, February.
    6. Alfredo Ibáñez, 2004. "Valuation by Simulation of Contingent Claims with Multiple Early Exercise Opportunities," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 223-248, April.
    7. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    8. Claudia Ribeiro & Nick Webber, 2006. "Correcting for Simulation Bias in Monte Carlo Methods to Value Exotic Options in Models Driven by Levy Processes," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(4), pages 333-352.
    9. Kimura, Toshikazu & Shinohara, Toshio, 2006. "Monte Carlo analysis of convertible bonds with reset clauses," European Journal of Operational Research, Elsevier, vol. 168(2), pages 301-310, January.
    10. Paul Glasserman & Jingyi Li, 2005. "Importance Sampling for Portfolio Credit Risk," Management Science, INFORMS, vol. 51(11), pages 1643-1656, November.
    11. Denis Belomestny & Christian Bender & John Schoenmakers, 2009. "True Upper Bounds For Bermudan Products Via Non‐Nested Monte Carlo," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 53-71, January.
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Laura Ballotta & Ioannis Kyriakou, 2014. "Monte Carlo Simulation of the CGMY Process and Option Pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(12), pages 1095-1121, December.
    14. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," The Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
    15. Martin Becker, 2010. "Comment on 'Correcting for Simulation Bias in Monte Carlo Methods to Value Exotic Options in Models Driven by Levy Processes' by C. Ribeiro and N. Webber," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(2), pages 133-146.
    16. L. C. G. Rogers, 2002. "Monte Carlo valuation of American options," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 271-286, July.
    17. Dingeç, Kemal Dinçer & Hörmann, Wolfgang, 2012. "A general control variate method for option pricing under Lévy processes," European Journal of Operational Research, Elsevier, vol. 221(2), pages 368-377.
    18. Boyle, Phelim P., 1977. "Options: A Monte Carlo approach," Journal of Financial Economics, Elsevier, vol. 4(3), pages 323-338, May.
    19. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiamin Lu & Nishan Chen & Xin Feng, 2023. "Competitive Analysis of the Online Leasing Problem for Scarce Resources," IJERPH, MDPI, vol. 20(1), pages 1-11, January.
    2. Wei-Cheng Chen & Wei-Ho Chung, 2019. "Option Pricing via Multi-path Autoregressive Monte Carlo Approach," Papers 1906.06483, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    2. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    3. Simon Scheidegger & Adrien Treccani, 2021. "Pricing American Options under High-Dimensional Models with Recursive Adaptive Sparse Expectations [Telling from Discrete Data Whether the Underlying Continuous-Time Model Is a Diffusion]," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 258-290.
    4. Carlos Andrés Zapata Quimbayo, 2020. "OPCIONES REALES Una guía teórico-práctica para la valoración de inversiones bajo incertidumbre mediante modelos en tiempo discreto y simulación de Monte Carlo," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, number 138, April.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    7. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    8. Nelson Areal & Artur Rodrigues & Manuel Armada, 2008. "On improving the least squares Monte Carlo option valuation method," Review of Derivatives Research, Springer, vol. 11(1), pages 119-151, March.
    9. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    10. D. Andricopoulos, Ari & Widdicks, Martin & Newton, David P. & Duck, Peter W., 2007. "Extending quadrature methods to value multi-asset and complex path dependent options," Journal of Financial Economics, Elsevier, vol. 83(2), pages 471-499, February.
    11. Zhongkai Liu & Tao Pang, 2016. "An efficient grid lattice algorithm for pricing American-style options," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 36-55.
    12. Maximilian Mair & Jan Maruhn, 2013. "On the primal-dual algorithm for callable Bermudan options," Review of Derivatives Research, Springer, vol. 16(1), pages 79-110, April.
    13. Chockalingam, Arun & Muthuraman, Kumar, 2015. "An approximate moving boundary method for American option pricing," European Journal of Operational Research, Elsevier, vol. 240(2), pages 431-438.
    14. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    15. Tebaldi, Claudio, 2005. "Hedging using simulation: a least squares approach," Journal of Economic Dynamics and Control, Elsevier, vol. 29(8), pages 1287-1312, August.
    16. Jin, Xing & Li, Xun & Tan, Hwee Huat & Wu, Zhenyu, 2013. "A computationally efficient state-space partitioning approach to pricing high-dimensional American options via dimension reduction," European Journal of Operational Research, Elsevier, vol. 231(2), pages 362-370.
    17. Martin B. Haugh & Leonid Kogan, 2004. "Pricing American Options: A Duality Approach," Operations Research, INFORMS, vol. 52(2), pages 258-270, April.
    18. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    19. Zbigniew Palmowski & Tomasz Serafin, 2020. "A Note on Simulation Pricing of π -Options," Risks, MDPI, vol. 8(3), pages 1-19, August.
    20. Muthuraman, Kumar, 2008. "A moving boundary approach to American option pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3520-3537, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:249:y:2016:i:2:p:683-690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.