Advanced Search
MyIDEAS: Login

An exact algorithm for the fixed-charge multiple knapsack problem

Contents:

Author Info

  • Yamada, Takeo
  • Takeoka, Takahiro
Registered author(s):

    Abstract

    We formulate the fixed-charge multiple knapsack problem (FCMKP) as an extension of the multiple knapsack problem (MKP). The Lagrangian relaxation problem is easily solved, and together with a greedy heuristic we obtain a pair of upper and lower bounds quickly. We make use of these bounds in the pegging test to reduce the problem size. We also present a branch-and-bound (B&B) algorithm to solve FCMKP to optimality. This algorithm exploits the Lagrangian upper bound as well as the pegging result for pruning, and at each terminal subproblem solve MKP exactly by invoking MULKNAP code developed by Pisinger [Pisinger, D., 1999. An exact algorithm for large multiple knapsack problems. European Journal of Operational Research 114, 528-541]. As a result, we are able to solve almost all test problems with up to 32,000 items and 50 knapsacks within a few seconds on an ordinary computing environment, although the algorithm remains some weakness for small instances with relatively many knapsacks.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6VCT-4PYGVW2-5/2/063c0d55ee4c174d27132a4ba96a4b8a
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 192 (2009)
    Issue (Month): 2 (January)
    Pages: 700-705

    as in new window
    Handle: RePEc:eee:ejores:v:192:y:2009:i:2:p:700-705

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/eor

    Related research

    Keywords: Integer programming Multiple knapsack problem Fixed-charge problem Combinatorial optimization;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:192:y:2009:i:2:p:700-705. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.