IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v184y2008i3p879-899.html
   My bibliography  Save this article

Dominance-based heuristics for one-machine total cost scheduling problems

Author

Listed:
  • Jouglet, Antoine
  • Savourey, David
  • Carlier, Jacques
  • Baptiste, Philippe

Abstract

No abstract is available for this item.

Suggested Citation

  • Jouglet, Antoine & Savourey, David & Carlier, Jacques & Baptiste, Philippe, 2008. "Dominance-based heuristics for one-machine total cost scheduling problems," European Journal of Operational Research, Elsevier, vol. 184(3), pages 879-899, February.
  • Handle: RePEc:eee:ejores:v:184:y:2008:i:3:p:879-899
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(06)01236-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Potts, C. N. & Van Wassenhove, L. N., 1983. "An algorithm for single machine sequencing with deadlines to minimize total weighted completion time," European Journal of Operational Research, Elsevier, vol. 12(4), pages 379-387, April.
    2. Richard K. Congram & Chris N. Potts & Steef L. van de Velde, 2002. "An Iterated Dynasearch Algorithm for the Single-Machine Total Weighted Tardiness Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 52-67, February.
    3. Akturk, M. Selim & Ozdemir, Deniz, 2001. "A new dominance rule to minimize total weighted tardiness with unequal release dates," European Journal of Operational Research, Elsevier, vol. 135(2), pages 394-412, December.
    4. Glover, Fred, 1998. "Tabu search -- wellsprings and challenges," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 221-225, April.
    5. F Della Croce & V T'kindt, 2002. "A Recovering Beam Search algorithm for the one-machine dynamic total completion time scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(11), pages 1275-1280, November.
    6. Suresh Chand & Rodney Traub & Reha Uzsoy, 1997. "Rolling horizon procedures for the single machine deterministic total completion time scheduling problem with release dates," Annals of Operations Research, Springer, vol. 70(0), pages 115-125, April.
    7. Baptiste, Philippe & Carlier, Jacques & Jouglet, Antoine, 2004. "A Branch-and-Bound procedure to minimize total tardiness on one machine with arbitrary release dates," European Journal of Operational Research, Elsevier, vol. 158(3), pages 595-608, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mallor, Fermin & Guardiola, Ivan G., 2014. "The Weibull scheduling index for client driven manufacturing processes," International Journal of Production Economics, Elsevier, vol. 150(C), pages 225-238.
    2. Ladhari, Talel & Rakrouki, Mohamed Ali, 2009. "Heuristics and lower bounds for minimizing the total completion time in a two-machine flowshop," International Journal of Production Economics, Elsevier, vol. 122(2), pages 678-691, December.
    3. Braune, R. & Zäpfel, G. & Affenzeller, M., 2012. "An exact approach for single machine subproblems in shifting bottleneck procedures for job shops with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 218(1), pages 76-85.
    4. Jouglet, Antoine & Carlier, Jacques, 2011. "Dominance rules in combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 212(3), pages 433-444, August.
    5. Pei-Chann Chang & Shih-Hsin Chen & Chin-Yuan Fan & V. Mani, 2010. "Generating artificial chromosomes with probability control in genetic algorithm for machine scheduling problems," Annals of Operations Research, Springer, vol. 180(1), pages 197-211, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Baptiste & Ruslan Sadykov, 2009. "On scheduling a single machine to minimize a piecewise linear objective function: A compact MIP formulation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 487-502, September.
    2. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    3. Jorge M. S. Valente & Rui A. F. S. Alves, 2003. "An Exact Approach to Early/Tardy Scheduling with Release Dates," FEP Working Papers 129, Universidade do Porto, Faculdade de Economia do Porto.
    4. Chang, Pei-Chann & Hsieh, Jih-Chang & Liu, Chen-Hao, 2006. "A case-injected genetic algorithm for single machine scheduling problems with release time," International Journal of Production Economics, Elsevier, vol. 103(2), pages 551-564, October.
    5. Ladhari, Talel & Rakrouki, Mohamed Ali, 2009. "Heuristics and lower bounds for minimizing the total completion time in a two-machine flowshop," International Journal of Production Economics, Elsevier, vol. 122(2), pages 678-691, December.
    6. Su, Ling-Huey & Chen, Chung-Jung, 2008. "Minimizing total tardiness on a single machine with unequal release dates," European Journal of Operational Research, Elsevier, vol. 186(2), pages 496-503, April.
    7. Yalaoui, F. & Chu, C., 2006. "New exact method to solve the Pm/rj/[summation operator]Cj schedule problem," International Journal of Production Economics, Elsevier, vol. 100(1), pages 168-179, March.
    8. Fred Glover, 2007. "Tabu search—Uncharted domains," Annals of Operations Research, Springer, vol. 149(1), pages 89-98, February.
    9. Haiyan Wang & Chung‐Yee Lee, 2005. "Production and transport logistics scheduling with two transport mode choices," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(8), pages 796-809, December.
    10. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    11. Tommaso Bianconcini & David Di Lorenzo & Alessandro Lori & Fabio Schoen & Leonardo Taccari, 2018. "Exploiting sets of independent moves in VRP," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 93-120, June.
    12. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    13. Valente, Jorge M.S., 2007. "Improving the performance of the ATC dispatch rule by using workload data to determine the lookahead parameter value," International Journal of Production Economics, Elsevier, vol. 106(2), pages 563-573, April.
    14. Jorge M. S. Valente, 2007. "Beam search heuristics for the single machine scheduling problem with linear earliness and quadratic tardiness costs," FEP Working Papers 250, Universidade do Porto, Faculdade de Economia do Porto.
    15. Pichitlamken, Juta & Nelson, Barry L. & Hong, L. Jeff, 2006. "A sequential procedure for neighborhood selection-of-the-best in optimization via simulation," European Journal of Operational Research, Elsevier, vol. 173(1), pages 283-298, August.
    16. Cheng, Jinliang & Steiner, George & Stephenson, Paul, 2001. "A computational study with a new algorithm for the three-machine permutation flow-shop problem with release times," European Journal of Operational Research, Elsevier, vol. 130(3), pages 559-575, May.
    17. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.
    18. Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.
    19. Sabuncuoglu, Ihsan & Gocgun, Yasin & Erel, Erdal, 2008. "Backtracking and exchange of information: Methods to enhance a beam search algorithm for assembly line scheduling," European Journal of Operational Research, Elsevier, vol. 186(3), pages 915-930, May.
    20. Kedar S. Naphade & S. David Wu & Robert H. Storer & Bhavin J. Doshi, 2001. "Melt Scheduling to Trade Off Material Waste and Shipping Performance," Operations Research, INFORMS, vol. 49(5), pages 629-645, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:184:y:2008:i:3:p:879-899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.