IDEAS home Printed from https://ideas.repec.org/a/eee/ecoser/v24y2017icp234-240.html
   My bibliography  Save this article

Air quality loss in urban centers of the Argentinean Dry Chaco: Wind and dust control as two scientifically neglected ecosystem services

Author

Listed:
  • Sacchi, Laura Valeria
  • Powell, Priscila Ana
  • Gasparri, Nestor Ignacio
  • Grau, Ricardo

Abstract

The Dry Chaco is one of the most active agriculture frontiers, which imposes trade-offs and synergies among ecosystem services (ES). Most studies analyze real or potential supply of ES associated to land use change; but they usually neglect ES social demands. Interviews to inhabitants of small urban centers in the Argentinean Dry Chaco revealed that wind speed control and dust control are high valued ES in towns within agricultural contexts. The absence of such perception in forest context towns, and the presence of vegetation covering soil during the windy and dry season support such demand. Loss of air quality –as an agricultural disservice- is a socially perceived ES so far ignored in the environmental research agenda, which should be reversed.

Suggested Citation

  • Sacchi, Laura Valeria & Powell, Priscila Ana & Gasparri, Nestor Ignacio & Grau, Ricardo, 2017. "Air quality loss in urban centers of the Argentinean Dry Chaco: Wind and dust control as two scientifically neglected ecosystem services," Ecosystem Services, Elsevier, vol. 24(C), pages 234-240.
  • Handle: RePEc:eee:ecoser:v:24:y:2017:i:c:p:234-240
    DOI: 10.1016/j.ecoser.2017.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2212041616301991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecoser.2017.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mastrangelo, Matías Enrique & Weyland, Federico & Herrera, Lorena Paola & Villarino, Sebastián Horacio & Barral, María Paula & Auer, Alejandra Denise, 2015. "Ecosystem services research in contrasting socio-ecological contexts of Argentina: Critical assessment and future directions," Ecosystem Services, Elsevier, vol. 16(C), pages 63-73.
    2. David Pimentel, 2006. "Soil Erosion: A Food and Environmental Threat," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 8(1), pages 119-137, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Zepharovich & Michele Graziano Ceddia & Stephan Rist, 2020. "Land-Use Conflict in the Gran Chaco: Finding Common Ground through Use of the Q Method," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    2. Matías E. Mastrangelo & Sebastián Aguiar, 2019. "Are Ecological Modernization Narratives Useful for Understanding and Steering Social-Ecological Change in the Argentine Chaco?," Sustainability, MDPI, vol. 11(13), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Semih Ediş & Özgür Burhan Timur & Gamze Tuttu & İbrahim Aytaş & Ceyhun Göl & Ali Uğur Özcan, 2023. "Assessing the Impact of Engineering Measures and Vegetation Restoration on Soil Erosion: A Case Study in Osmancık, Türkiye," Sustainability, MDPI, vol. 15(15), pages 1-16, August.
    2. Aznarul Islam & Sanat Kumar Guchhait, 2017. "Search for social justice for the victims of erosion hazard along the banks of river Bhagirathi by hydraulic control: a case study of West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 433-459, April.
    3. Václav BRANT & Milan KROULÍK & Jan PIVEC & Petr ZÁBRANSKÝ & Josef HAKL & Josef HOLEC & Zdeněk KVÍZ & Luděk PROCHÁZKA, 2017. "Splash erosion in maize crops under conservation management in combination with shallow strip-tillage before sowing," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 12(2), pages 106-116.
    4. López-Vicente, M. & Navas, A. & Gaspar, L. & Machín, J., 2013. "Advanced modelling of runoff and soil redistribution for agricultural systems: The SERT model," Agricultural Water Management, Elsevier, vol. 125(C), pages 1-12.
    5. David Oscar Yawson & Michael Osei Adu & Benjamin Ason & Frederick Ato Armah & Genesis Tambang Yengoh, 2016. "Putting Soil Security on the Policy Agenda: Need for a Familiar Framework," Challenges, MDPI, vol. 7(2), pages 1-11, September.
    6. Aditi Sengupta & Priyanka Kushwaha & Antonia Jim & Peter A. Troch & Raina Maier, 2020. "New Soil, Old Plants, and Ubiquitous Microbes: Evaluating the Potential of Incipient Basaltic Soil to Support Native Plant Growth and Influence Belowground Soil Microbial Community Composition," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    7. Caterina Samela & Vito Imbrenda & Rosa Coluzzi & Letizia Pace & Tiziana Simoniello & Maria Lanfredi, 2022. "Multi-Decadal Assessment of Soil Loss in a Mediterranean Region Characterized by Contrasting Local Climates," Land, MDPI, vol. 11(7), pages 1-25, July.
    8. Wen, Xiaojie & Yao, Shunbo & Sauer, Johannes, 2022. "Shadow prices and abatement cost of soil erosion in Shaanxi Province, China: Convex expectile regression approach," Ecological Economics, Elsevier, vol. 201(C).
    9. Václav BRANT & Petr ZÁBRANSKÝ & Michaela ŠKEŘÍKOVÁ & Jan PIVEC & Milan KROULÍK & Luděk PROCHÁZKA, 2017. "Effect of row width on splash erosion and throughfall in silage maize crops," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 12(1), pages 39-50.
    10. Nepal, Sandhya & Tran, Liem T., 2019. "Identifying trade-offs between socio-economic and environmental factors for bioenergy crop production: A case study from northern Kentucky," Renewable Energy, Elsevier, vol. 142(C), pages 272-283.
    11. Nuaman Ejaz & Mohamed Elhag & Jarbou Bahrawi & Lifu Zhang & Hamza Farooq Gabriel & Khalil Ur Rahman, 2023. "Soil Erosion Modelling and Accumulation Using RUSLE and Remote Sensing Techniques: Case Study Wadi Baysh, Kingdom of Saudi Arabia," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    12. Shanshan Xu & Qinghe Zhao & Shengyan Ding & Mingzhou Qin & Lixin Ning & Xiaoyu Ji, 2018. "Improving Soil and Water Conservation of Riparian Vegetation Based on Landscape Leakiness and Optimal Vegetation Pattern," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    13. Michele A. Whitecraft & Bruce E. Huggins Jr., 2013. "Casting a Wider Net: Understanding the “Root” Causes of Human-Induced Soil Erosion," Agriculture, MDPI, vol. 3(4), pages 1-16, September.
    14. Jiang, Wei, 2017. "Ecosystem services research in China: A critical review," Ecosystem Services, Elsevier, vol. 26(PA), pages 10-16.
    15. Hoekman, S. Kent & Broch, Amber & Liu, Xiaowei (Vivian), 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part I – Impacts on water, soil, and air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3140-3158.
    16. Marianne Bechmann & Inga Greipsland & Anne Falk Øgaard, 2019. "Implementation of Mitigation Measures to Reduce Phosphorus Losses: The Vestre Vansjø Pilot Catchment," Agriculture, MDPI, vol. 9(1), pages 1-19, January.
    17. Ermias Debie & Amare Wubishet Ayele, 2023. "Perceived Determinants of Smallholder Households’ Resilience to Livelihood Insecurity in Goncha District, Northwest Highlands of Ethiopia," SAGE Open, , vol. 13(3), pages 21582440231, July.
    18. Rose, David C. & Sutherland, William J. & Barnes, Andrew P. & Borthwick, Fiona & Ffoulkes, Charles & Hall, Clare & Moorby, Jon M. & Nicholas-Davies, Phillipa & Twining, Susan & Dicks, Lynn V., 2019. "Integrated farm management for sustainable agriculture: Lessons for knowledge exchange and policy," Land Use Policy, Elsevier, vol. 81(C), pages 834-842.
    19. Xinmin Zhang & Ronald C Estoque & Hualin Xie & Yuji Murayama & Manjula Ranagalage, 2019. "Bibliometric analysis of highly cited articles on ecosystem services," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-16, February.
    20. Donal Mullan, 2013. "Managing Soil Erosion in Northern Ireland: A Review of Past and Present Approaches," Agriculture, MDPI, vol. 3(4), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecoser:v:24:y:2017:i:c:p:234-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/ecosystem-services .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.