Advanced Search
MyIDEAS: Login

Ratio-based estimators for a change point in persistence

Contents:

Author Info

  • Halunga, Andreea G.
  • Osborn, Denise R.

Abstract

We study estimation of the date of change in persistence, from I(0) to I(1) or vice versa. Contrary to statements in the original papers, our analytical results establish that the ratio-based break point estimators of Kim [Kim, J.Y., 2000. Detection of change in persistence of a linear time series. Journal of Econometrics 95, 97–116], Kim et al. [Kim, J.Y., Belaire-Franch, J., Badillo Amador, R., 2002. Corringendum to “Detection of change in persistence of a linear time series”. Journal of Econometrics 109, 389–392] and Busetti and Taylor [Busetti, F., Taylor, A.M.R., 2004. Tests of stationarity against a change in persistence. Journal of Econometrics 123, 33–66] are inconsistent when a mean (or other deterministic component) is estimated for the process. In such cases, the estimators converge to random variables with upper bound given by the true break date when persistence changes from I(0) to I(1). A Monte Carlo study confirms the large sample downward bias and also finds substantial biases in moderate sized samples, partly due to properties at the end points of the search interval.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0304407612001716
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 171 (2012)
Issue (Month): 1 ()
Pages: 24-31

as in new window
Handle: RePEc:eee:econom:v:171:y:2012:i:1:p:24-31

Contact details of provider:
Web page: http://www.elsevier.com/locate/jeconom

Related research

Keywords: Persistence change; Order of integration; Structural breaks;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
  2. Busetti, Fabio & Taylor, A. M. Robert, 2004. "Tests of stationarity against a change in persistence," Journal of Econometrics, Elsevier, vol. 123(1), pages 33-66, November.
  3. Peter C.B. Phillips, 1985. "Time Series Regression with a Unit Root," Cowles Foundation Discussion Papers 740R, Cowles Foundation for Research in Economics, Yale University, revised Feb 1986.
  4. Kim, Jae-Young, 2000. "Detection of change in persistence of a linear time series," Journal of Econometrics, Elsevier, vol. 95(1), pages 97-116, March.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:171:y:2012:i:1:p:24-31. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.