Advanced Search
MyIDEAS: Login

Whittle estimation of EGARCH and other exponential volatility models

Contents:

Author Info

  • Zaffaroni, Paolo
Registered author(s):

    Abstract

    The strong consistency and asymptotic normality of the Whittle estimate of the parameters in a class of exponential volatility processes are established. Our main focus here are the EGARCH model of [Nelson, D. 1991. Conditional heteroscedasticity in asset pricing: A new approach. Econometrica 59, 347-370] and other one-shock models such as the GJR model of [Glosten, L., Jaganathan, R., Runkle, D., 1993. On the relation between the expected value and the volatility of the nominal excess returns on stocks. Journal of Finance, 48, 1779-1801], but two-shock models, such as the SV model of [Taylor, S. 1986. Modelling Financial Time Series. Wiley, Chichester, UK], are also comprised by our assumptions. The variable of interest might not have finite fractional moment of any order and so, in particular, finite variance is not imposed. We allow for a wide range of degrees of persistence of shocks to conditional variance, allowing for both short and long memory.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6VC0-4VW5580-7/2/dc4e0dc0fb5a95c8ac7e035ef13706c7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Econometrics.

    Volume (Year): 151 (2009)
    Issue (Month): 2 (August)
    Pages: 190-200

    as in new window
    Handle: RePEc:eee:econom:v:151:y:2009:i:2:p:190-200

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/jeconom

    Related research

    Keywords: EGARCH GJR Stochastic volatility Whittle estimation Asymptotics;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Cheung, Yin-Wong & Diebold, Francis X., 1994. "On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean," Journal of Econometrics, Elsevier, vol. 62(2), pages 301-316, June.
    2. Robinson, P. M., 1978. "Alternative models for stationary stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 8(2), pages 141-152, December.
    3. Brandt, Michael W. & Jones, Christopher S., 2006. "Volatility Forecasting With Range-Based EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 470-486, October.
    4. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    5. Harvey, Andrew & Ruiz, Esther & Shephard, Neil, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Wiley Blackwell, vol. 61(2), pages 247-64, April.
    6. Rohit Deo & Clifford Hurvich & Yi Lu, 2005. "Forecasting Realized Volatility Using a Long Memory Stochastic Volatility Model: Estimation, Prediction and Seasonal Adjustment," Econometrics 0501002, EconWPA.
    7. Granger, C. W. J. & Andersen, Allan, 1978. "On the invertibility of time series models," Stochastic Processes and their Applications, Elsevier, vol. 8(1), pages 87-92, November.
    8. Giraitis, Liudas & Robinson, Peter M., 2001. "Whittle Estimation Of Arch Models," Econometric Theory, Cambridge University Press, vol. 17(03), pages 608-631, June.
    9. Paolo Zaffaroni, 2003. "Gaussian inference on certain long-range dependent volatility models," Temi di discussione (Economic working papers) 472, Bank of Italy, Economic Research and International Relations Area.
    10. Zaffaroni, Paolo & d'Italia, Banca, 2003. "Gaussian inference on certain long-range dependent volatility models," Journal of Econometrics, Elsevier, vol. 115(2), pages 199-258, August.
    11. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    12. Nour Meddahi, 2000. "Temporal Aggregation of Volatility Models," Econometric Society World Congress 2000 Contributed Papers 1903, Econometric Society.
    13. Hidalgo, J. & Yajima, Y., 2002. "Prediction And Signal Extraction Of Strongly Dependent Processes In The Frequency Domain," Econometric Theory, Cambridge University Press, vol. 18(03), pages 584-624, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Wintenberger, Olivier & Cai, Sixiang, 2011. "Parametric inference and forecasting in continuously invertible volatility models," MPRA Paper 31767, University Library of Munich, Germany.
    2. Wintenberger, Olivier, 2013. "Continuous invertibility and stable QML estimation of the EGARCH(1,1) model," MPRA Paper 46027, University Library of Munich, Germany.
    3. repec:imd:wpaper:wp2010-25 is not listed on IDEAS
    4. Genaro Sucarrat & Alvaro Escribano, 2010. "The power log-GARCH model," Economics Working Papers we1013, Universidad Carlos III, Departamento de Economía.
    5. Artiach, Miguel & Arteche, Josu, 2012. "Doubly fractional models for dynamic heteroscedastic cycles," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2139-2158.
    6. HAFNER, Christian & LINTON, Oliver, 2013. "An almost closed form estimator for the EGARCH model," CORE Discussion Papers 2013022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:151:y:2009:i:2:p:190-200. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.