Advanced Search
MyIDEAS: Login

Continuous invertibility and stable QML estimation of the EGARCH(1,1) model

Contents:

Author Info

  • Wintenberger, Olivier

Abstract

We introduce the notion of continuous invertibility on a compact set for volatility models driven by a Stochastic Recurrence Equation (SRE). We prove the strong consistency of the Quasi Maximum Likelihood Estimator (QMLE) when the optimization procedure is done on a continuously invertible domain. This approach gives for the first time the strong consistency of the QMLE used by Nelson (1991) for the EGARCH(1,1) model under explicit but non observable conditions. In practice, we propose to stabilize the QMLE by constraining the optimization procedure to an empirical continuously invertible domain. The new method, called Stable QMLE (SQMLE), is strongly consistent when the observations follow an invertible EGARCH(1,1) model. We also give the asymptotic normality of the SQMLE under additional minimal assumptions.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/46027/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 46027.

as in new window
Length:
Date of creation: 07 Jan 2013
Date of revision:
Handle: RePEc:pra:mprapa:46027

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Invertible models; volatility models; quasi maximum likelihood; strong consistency; asymptotic normality; exponential GARCH; stochastic recurrence equation.;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
  2. Jensen, S ren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(06), pages 1203-1226, December.
  3. Francq, Christian & Wintenberger, Olivier & Zakoïan, Jean-Michel, 2013. "GARCH models without positivity constraints: Exponential or log GARCH?," Journal of Econometrics, Elsevier, vol. 177(1), pages 34-46.
  4. Zaffaroni, Paolo, 2009. "Whittle estimation of EGARCH and other exponential volatility models," Journal of Econometrics, Elsevier, vol. 151(2), pages 190-200, August.
  5. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  6. repec:imd:wpaper:wp2010-25 is not listed on IDEAS
  7. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
  8. He, Changli & Ter svirta, Timo & Malmsten, Hans, 2002. "Moment Structure Of A Family Of First-Order Exponential Garch Models," Econometric Theory, Cambridge University Press, vol. 18(04), pages 868-885, August.
  9. Brandt, Michael W. & Jones, Christopher S., 2006. "Volatility Forecasting With Range-Based EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 470-486, October.
  10. Genaro Sucarrat & Alvaro Escribano, 2010. "The power log-GARCH model," Economics Working Papers we1013, Universidad Carlos III, Departamento de Economía.
  11. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  12. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
  13. Vrontos, I D & Dellaportas, P & Politis, D N, 2000. "Full Bayesian Inference for GARCH and EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 187-98, April.
  14. Shao, Qi-Man, 1993. "Complete convergence for [alpha]-mixing sequences," Statistics & Probability Letters, Elsevier, vol. 16(4), pages 279-287, March.
  15. Antonis Demos & Dimitra Kyriakopoulou, 2010. "Bias Correction of ML and QML Estimators in the EGARCH(1,1) Model," DEOS Working Papers 1108, Athens University of Economics and Business.
  16. Elton, John H., 1990. "A multiplicative ergodic theorem for lipschitz maps," Stochastic Processes and their Applications, Elsevier, vol. 34(1), pages 39-47, February.
  17. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Christophe Chorro & Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2014. "Testing for Leverage Effect in Financial Returns," Documents de travail du Centre d'Economie de la Sorbonne 14022, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  2. Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2014. "Maximum Likelihood Estimation for Generalized Autoregressive Score Models," Tinbergen Institute Discussion Papers 14-029/III, Tinbergen Institute, revised 19 Apr 2014.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:46027. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.